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Abstract

Most solid oxide fuel cell (SOFC) modelling efforts emphasize steady-state cell operation. However, understanding the dynamic behaviour is
essential to predict the performance and limitations of SOFC power systems. This article presents the development of a SOFC dynamic model
and a feedback control scheme that can maintain output voltage despite load changes. Dynamic responses are determined as the solutions of
coupled partial differential equations derived from conservation laws of charges, mass, momentum and energy. To obtain the performance curve,
the dynamic model is subjected to varying load current for different fuel specifications. From such a model, the voltage responses to step changes in
the fuel concentration and load current are determined. Low-order dynamic models that are sufficient for feedback control design are derived from
the step responses. The development of the partial differential equation model is outlined and the limitations of the control system are discussed.
© 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

A fuel cell is a device that converts a constant supply of fuel
directly to electrical power. Solid oxide fuel cells (SOFC) have
emerged as one of the leading fuel cell technologies which can
be used in a wide range of commercial applications. Their solid
electrolyte is made of a ceramic material which requires the
operating temperature range of 800-1000 °C. In recent years,
the number of computational models of SOFC has been grad-
ually increasing. Since SOFC operations are often subjected
to transient condition such as changes in power demand, fuel
cell dynamics have been increasingly considered in modelling
activities. By developing a physically based dynamic model,
the transient behaviour of SOFC can be accurately predicted
and the design envelopes can be optimized. The dynamic model
is especially beneficial for control testing in the development
stage of SOFC.

Most of the existing dynamic models were developed for pre-
diction of SOFC performance and limitations. Additionally, the
majority of dynamic models for process control have focused on
large-scale operation such as an integrated-SOFC power plant
system. For instance, Stiller, Thorud, Bolland, Kandepu, and
Imsland (2006) and Thorud, Bolland, and Kvamsdal (2002)
have presented a dynamic model for control of the integrated
SOFC and turbine systems. It has been shown that the power
supplied by the SOFC system can be controlled by manipulat-
ing the fuel flow using a proportional-integral-derivative (PID)
type controller. In other work by Aguiar, Adjimana, and Brandon
(2005), the temperature control of a stack-level SOFC model
was presented. A PID controller was implemented to maintain
the outlet fuel temperature and the fuel utilization during load
changes by varying the air flow rates. The findings from these
models emphasize the need for the process control to enhance
the reliability and minimize the degradation of SOFC.

A physically based three-dimensional (3D) dynamic model of
a single SOFC is presented in this article. To investigate the tran-
sient performance and limitations of SOFC, this dynamic model
is subjected to step changes in inlet gas concentrations and exter-
nal load currents. Low-order models capable of capturing the
main dynamic behaviour of the SOFC system are derived from
the step responses. Feedback PI controllers are simulated with
the low-order models in the voltage control-loop. An approach

to control the output voltage such that it is close to the set-point
voltage despite external load changes is outlined.

The remaining of this article is organized as follows: Section
2 presents a review of the SOFC operating principles; Section 3
presents the numerical formulation for the dynamic model; Sec-
tion 4 discusses the steady-state and dynamic modelling results;
Section 5 addresses the control of the SOFC output voltage in
the presence of varying load by implementing a PI controller.
The concluding remarks are presented in Section 6.

2. SOFC operating principles

In SOFC, the oxygen ion (O?~) is the mobile ion transferred
through a solid electrolyte in the following half-cell reactions at
the cathode and anode, respectively.

10, +2¢7 < 0" (1)

H; + 0%~ < Hy0 + 2e” ()
The overall reaction is then
H> + 10, — H,0 3)

A schematic diagram presenting the flow of mass and charges
for a SOFC is shown in Fig. 1.

2.1. Thermodynamics of solid oxide fuel cells

The amount of voltage that an electrochemical fuel cell
produced is determined from the change in Gibbs free energy
of an overall chemical reaction. The change in Gibbs free
energy is dependent on the partial pressure of the reactants and
products. For a hydrogen—oxygen fuel cell, the change in Gibbs
free energy is

12

AG(T) = AG°(T) + RT In (PH20> (4)
PH2P02

where AG°(T) is the Gibbs free energy change at standard
state. At equilibrium, the change in Gibbs free energy is related
to the electrochemical work done by electrons according to the
equation

AG(T) = —no FE(T) 5)
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