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Abstract

A hybrid genetic algorithm-based method to solve constrained multi-objective optimization problems is proposed. Considering operation around
a steady state of a dynamical system, the task of the algorithm consists on finding a set of optimal, but constrained solutions. The method is
exemplified on a (bio)chemical reaction network in Saccharomyces cerevisiae. In the steady state the model reduces to a system of non-linear
equations which must be solved by a search method. This iterative search was integrated into a genetic algorithm in order to look up for optimal
steady states. The basic idea is to use individuals of the genetic algorithm as starting points for the search algorithm. The optimization goal
was to simultaneously maximize ethanol production and reduce metabolic burden. Two alternative kinetic approaches are compared to Michaelis
Menten-type kinetics: a S-System and a generalized mass action model, both based on Power-Law kinetics.
© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Many technological researches demand an improvement of
a process, a product or an integrated system. The search for the
best feasible enhancement can be included under the topic opti-
mization, which will be considered in several biotechnological
research fields in the next years. Usually the optimization tar-
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get is given intrinsically by the model of the system considered.
Based on this model, a mathematical formulation of the objective
function is derived, which has to be improved via an optimization
process. Models of (bio)chemical systems are described in terms
of coupled ordinary differential equations (ODEs) accounting
for the rates or fluxes of each of the n involved variables (species),
x = (x1, x2, . . ., xn):

dxi

dt
= fi(x, p) for i = 1, 2, . . . n (1)

Besides the variables, most models depend on parameters
(collected in a vector p), which usually have constant values.
Since most complex systems exhibit non-linear behavior, their
models consist of a set of non-linear functions for which is, in
general, not possible to obtain the exact optimal solution. Instead
of an analytical approach, numerical methods are used, which
reach from linear programming (LP) to more sophisticated algo-
rithms based on stochastic principles.
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Optimization in mathematical terms is defined as the search of
a certain decision vector x ∈ SX such that the objective function
φ takes an extreme objective value, y = φ(x), where y ∈ SY.

The optimization gets more complicated when the inter-
est lies on problems considering multiple and even conflicting
objectives. This leads to a multi-objective optimization problem
(MOP) where, in general, it is not possible to obtain a single
optimal solution but an efficient set of best alternatives. The
efficient set of a MOP consists of decision vectors, which can-
not be improved in any objective without degradation in other
objectives. These vectors are known as Pareto optimal.

MOPs arising from (bio)chemical systems are often con-
strained by steady state conditions in order to guarantee a
continuous optimal operation. At steady state, none of the vari-
ables change their value as a function of time, even though
material is flowing through the system. Mathematically the situ-
ation requires that all ODEs in Eq. (1) are equal to zero, reducing
the model to an algebraic system of non-linear equations (NLS):

F (x, p) = (f1(x, p), . . . , fn(x, p))T = 0 (2)

Any steady state of the model corresponds to a stationary
operating point of a continuous process. A particular value p = p′
fixes design and operational parameters of the process and find-
ing an appropriate value p′ therefore amounts to designing the
process (Marquardt & Mönnigmann, 2005).

With appropriate values for p′, a solution of Eq. (2) can be
given by a vector x*. To compute x*, Eq. (2) is solved iteratively
by a search algorithm. Starting from a point x0, series of vec-
tors x1, x2,. . . are generated taking into account a convergence
criteria to approximate the solution asymptotically.

The constrained MOP consists then on the optimization
(exemplified in Eq. (3) with the maximization) of the objec-
tive functions φi, which depend on the variables x and on the
parameters p:

max φi(x, p) for i = 1, 2, ..., m (3)

The objective functions might take maximal or minimal val-
ues under the condition that Eq. (2) holds true. In order to search
for these efficient steady states, the variables and parameters are
altered in a given predefined constrained search space for the
systems variables and parameters, which are also considered as
decision variables in the optimization process.

x = (x1, x2, . . . , xn) ∈ Sx, p = (p1, p2, . . . , pl) ∈ Sp (4)

In general, there are few evolutionary algorithms developed
for constrained multi-objective optimization problems (Sarker,
Abbass, & Karim, 2001). In this work, optimization is carried
out with a genetic algorithm (GA), which is based on a stochastic
search considering only the steady state solutions of the system.

Biochemical reactions are enzyme catalyzed and commonly
described in terms of Michaelis Menten (MM) kinetics. How-
ever, its structure has been criticized by some authors, who
suggest kinetics that are based on the Power-Law formalism
(Savageau, 1969a). Similar to chemical reactions the rate law
depends on a rate constant α and the involved species xi raised

to a power, the kinetic order gi.

v = α

n∏
i=1

xgi
i (5)

As the kinetic orders can take any value (even negative), these
kinetics are also labelled fractal kinetics. Savageau (1969a,b)
based the Biochemical Systems Theory (BST) on this approach.
Within the BST are the S-Systems and generalized mass action
(GMA) models the alternative representations of MM-type mod-
els.

S-Systems are non-linear models (as they are based on Eq.
(5)) but suppose an effective aggregation of chemical fluxes
into a net input and output fluxes in each differential equation.
With this property, S-Systems models can be optimized in a
linear domain by LP after a logarithmic transformation using
the so called indirect optimization method (IOM) (Torres, Voit,
González-Alcón, & Rodrı́guez, 1997). Accordingly, a perfor-
mance comparison with the proposed non-linear method set
against the efficient states of a S-System calculated with the
IOM was possible. The evaluation was extended as well for the
efficient (steady) states using a MM model, a GMA model and
a S-System of a (bio)chemical reaction network for Saccha-
romyces cerevisiae. The present work shows how the non-linear
method is able to compute solutions close to those of the true
efficient set obtained with the IOM.

2. The multi-objective genetic algorithm

GAs were found useful for solving MOPs, as they have some
advantages over traditional operational research techniques. For
example, considerations for convexity, concavity, and/or conti-
nuity of functions are not necessary in GAs, whereas they form a
real challenge in traditional optimization techniques. MOPs are
considered as “difficult problems” in the specialized literature,
being the constrained MOPs even more difficult (Sarker et al.,
2001).

For this work, a modified version of the Strength Pareto Evo-
lutionary Algorithm (SPEA) for multi-objective optimization is
discussed. Comparative studies for a large number of case stud-
ies have shown that, among all major multi-objective GAs, the
SPEA is clearly superior (Zitzler & Thiele, 1999). The SPEA
uses two populations and is based on the principles of Pareto
dominance. The original SPEA was modified in order to handle
the steady state constraints. The simplified flow of the algorithm
reads as follows:

• Step 1. Produce an initial population P of variables xk ∈ Sx

and of parameters pk ∈ Sp for N individuals I

Ik = (xk, pk) for k = 1, . . . , N

• Step 2. Solve the NLS F(x,pk) = 0 for x with a search algorithm
starting at xk and replace xk by the solution x∗

k in the population
P (see Section 3 for a detailed description).

• Step 3. Copy Pareto optimal members in P to an extern pop-
ulation P′.
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