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Abstract

Gaussian process models provide a probabilistic non-parametric modelling approach for black-box identification of non-linear dynamic systems.
The Gaussian processes can highlight areas of the input space where prediction quality is poor, due to the lack of data or to its complexity, by
indicating the higher variance around the predicted mean. Gaussian process models contain noticeably less coefficients to be optimised. This paper
demonstrates feasibility of application and realisation of a control algorithm based on a Gaussian process model. The extra information provided by
the Gaussian process model is used in predictive control, where optimisation of the control signal takes the variance information into account. The
feasibility of Gaussian process model usage for predictive control in industrial practice is demonstrated via the control of a gas–liquid separation
plant.
© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The popularity of MPC can be attributed largely to the abil-
ity of MPC algorithms to deal with constraints that are fre-
quently met in control practice and are often not well addressed
by other approaches. MPC algorithms can handle hard state
and rate constraints on inputs and states that are usually,
but not always, incorporated in the algorithms via an opti-
misation method. Linear model predictive control approaches
(Maciejowski, 2002) started appearing in the early 1980s and
are well-established in control practice (e.g. Qin & Badgwell,
1997 for an overview). Non-linear model predictive control
(NMPC) approaches (Allgöwer, Badgwell, Qin, Rawlings, &
Wright, 1999) started to appear about 10 years later and have
also found their way into control practice (e.g. Qin & Badgwell,
2000; Young, Bartusiak, & Fontaine, 2001]) though their pop-
ularity cannot be compared to linear model predictive control.
This is due to the difficulties associated with non-linear model
construction and with the lack of the necessary confidence

∗ Corresponding author. Tel.: +386 1 4773 661; fax: +386 1 4773 994.
E-mail address: jus.kocijan@ijs.si (J. Kocijan).

in the model. There have been a number of contributions in
the field of non-linear model predictive control dealing with
issues such as stability, efficient computation, optimisation, con-
straints and others. Some recent work in this field can be found
in Allgöwer and Zheng (2000) and Kouvaritakis and Cannon
(2001). NMPC algorithms are based on various non-linear mod-
els. Often these models are developed as first principles models,
but other approaches – like black-box identification approaches
– are also popular. Various predictive control algorithms are
based on neural networks models (e.g. Nørgaard, Ravn, Poulsen,
& Hansen, 2000), fuzzy models (e.g. Kavšek-Biasizzo, Škrjanc,
& Matko, 1997) or local model networks (e.g. Johansen, Foss,
& Sorensen, 1995). Non-linear model-based predictive control,
as the name implies, critically depends on the non-linear plant
model. The better the model, the better the control. This is where
Gaussian process models can offer significant advantages. Gaus-
sian process models provide a measure of confidence, which
would be of help in NMPC design as noted in Tsai, Chu, Jang,
and Shieh (2002), where a different approach to the same prob-
lem was described. The Gaussian process model is an example
of a probabilistic non-parametric black-box model that also
provides information about prediction uncertainties, which are
difficult to evaluate appropriately in non-linear parametric mod-
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els. The majority of work on Gaussian processes presented up
to now considers the modelling of static non-linearities. The
use of Gaussian processes in modelling dynamic systems is a
recent development (e.g. Girard & Murray-Smith, 2005; Girard,
Rasmussen, Candela, & Murray-Smith, 2003; Kocijan, Girard,
Banko, & Murray-Smith, 2003; Kocijan & Likar, et al., 2003;
Murray-Smith & Girard, 2001) and some control algorithms
based on such an approach are described in Murray-Smith and
Sbarbaro (2002) and Gregorčič and Lightbody (2003). This
approach to modelling is not considered as a replacement of
any existing method, but rather as a complementary approach to
modelling. The drawback of Gaussian process models is the con-
siderable computational burden. This burden may be perceived
as an obstacle for Gaussian process model usage in industrial
control applications. The purpose of this paper is to demon-
strate the feasibility of application and realisation of a control
algorithm based on a Gaussian process model on a process plant
and to highlight some of the potentials. More about the bene-
fits of dynamic systems modelling with Gaussian processes can
be found in Girard and Murray-Smith (2005) and Kocijan and
Girard, et al. (2003).

The paper is organized as follows. Dynamic Gaussian process
models are briefly introduced in the following section. The con-
trol algorithm principle is described in Section 3. The example
in Section 4 illustrates the operation of NMPC on a gas–liquid
separator plant. Conclusions are stated at the end of the
paper.

2. Modelling of dynamic systems with Gaussian
processes

A Gaussian process is an example of the use of a flexi-
ble, probabilistic, non-parametric model with uncertainty pre-
dictions. Its use and properties for modelling are reviewed in
Williams (1998).

A Gaussian process is a collection of random variables,
which have a joint multivariate Gaussian distribution. Assum-
ing a relationship of the form y = f(x) between an input x and
output y, we have y1, . . . , yn ∼ N(0,

∑
), where �pq = Cov(yp,

yq) = C(xp, xq) determines the covariance between output points
corresponding to input points xp and xq. Thus, the mean μ(x)
(usually assumed to be zero) and the covariance function C(xp,
xq) fully specify the Gaussian process. Note that the covariance
function C(., .) can be any function having the property of gen-
erating a positive definite covariance matrix.

A common choice is:

C(xp, xq) = v1 exp

[
−1

2

D∑
d=1

wd(xd
p − xd

q)

]
+ v0δpq, (1)

where � = [w1 . . . wDv0v1]T are the ‘hyperparameters’ of the
covariance functions, δpq is the Kronecker operator, and D is the

input dimension. Other forms of covariance functions suitable
for different applications can be found in Rasmussen (1996). For
a given problem, the parameters are learned (identified) using
the data at hand. After the learning the w parameters can be
used as indicators of ‘how important’ the corresponding input
components (dimensions) are: if wd is zero or near zero it means
that the inputs in dimension d contain little information and could
possibly be removed.

Consider a set of N D-dimensional input vectors X = [x1,
x2, . . ., xN] and a vector of output data y = [y1, y2, . . ., yN]T.
Based on the data (X, y), and given a new input vector x*, we
wish to find the predictive distribution of the corresponding
output y*. Unlike other models, there is no model parameter
determination as such, within a fixed model structure. With
this model, most of the effort consists of tuning the parameters
of the covariance function. This is done by maximizing the
log-likelihood of the parameters, which is computationally
relatively demanding since the inverse of the data covariance
matrix (N × N) has to be calculated at every iteration. Neverthe-
less, the number of parameters to be optimised is small (D + 2,
see Eq. (1)), which means that optimisation convergence might
be faster and that the ‘curse of dimensionality’ so common to
black-box identification methods is circumvented or at least
decreased.

The described approach can be easily utilized for regression
calculation. Based on a training set X a covariance matrix
K of size N × N is determined. As already mentioned, the
aim is to find the distribution of the corresponding output
y* at some new input vector x* = [x1(N + 1), x2(N + 1), . . .,
xD(N + 1)]T.

For a new test input x*, the predictive distribution of the
corresponding output is y*|(X, y), x* and is Gaussian, with mean
and variance:

μ(x∗) = k(x∗)T K−1y, (2)

σ2(x∗) = k(x∗) − k(x∗)T K−1k(x∗), (3)

where k(x*) = [C(x1, x*), . . ., C(xN, x*)]T is the N × 1 vec-
tor of covariances between the test and training cases, and
k(x*) = C(x*, x*) is the covariance between the test input and
itself.

Gaussian processes can, like neural networks, be used
to model static non-linearities and can therefore be used
for modelling dynamic systems (Girard & Murray-Smith,
2005; Girard et al., 2003; Kocijan & Girard, et al., 2003;
Kocijan & Likar, et al., 2003) if delayed input and output
signals are fed back and used as regressors. In such cases an
autoregressive model is considered, such that the current output
depends on previous outputs, as well as on previous control
inputs:

x(k) = [ŷ(k − 1), ŷ(k − 2), . . . , ŷ(k − L), u(k − 1), u(k − 2), . . . , u(k − L)]T ,

ŷ(k) = f (x(k)) + ε,
(4)

where k denotes the consecutive number of the data sample.
Let x denote the state vector composed of the previous outputs
y and inputs u up to a given lag L, and ε is white noise.
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