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Abstract

Nonlinear equality and inequality constrained optimization problems with uncertain parameters can be addressed by a robust worst-case formu-
lation that leads to a bi-level min—max optimization problem. We propose and investigate a numerical method to solve this min—max optimization
problem exactly in the case that the underlying maximization problem always has its solution on the boundary of the uncertainty set. This is an
adoption of the local reduction approach used to solve generalized semi-infinite programs. The approach formulates an equilibrium constraint
employing first order derivatives of both the uncertainty set and the user defined constraints. We propose two different ways for computation of
these derivatives, one similar to the forward mode, the other similar to the reverse mode of automatic differentiation. We show the equivalence
of the proposed approach to a method based on geometric considerations that was recently developed by some of the authors. We show how to
generalize the techniques to optimal control problems. The robust dynamic optimization of a batch distillation illustrates that both techniques are
numerically efficient and able to overcome the inexactness of another recently proposed numerical approach to address uncertainty in optimal
control problems.
© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction will denote by x(u, p). This division into states x and controls u
arises naturally in model based optimization, where the equali-
We consider uncertain nonlinear programming problems ties g(x, u, p) = 0 often contain discretized ordinary or partial

(NLP) of the form differential equations, such that we are in particular interested
in case where n, > 1.
. fx,u,p) <0 We assume we have some knowledge about the uncertain
min fox, u, p), st €))] .
xe Ry € Rnu gx,u, p)=0 parameters p such that they are restricted to the compact set

. n Ny . —
with uncertain parameters p € R"». The optimization variables P) = {peR7[EAx eR™ : glx,u, p) = 0. h(x, u, p) < O}.

are partitioned into states x € R"* and controls u € R"*. The )
objective function fj, inequality constraints f, and equality con- ) ) )
straints g are smooth functions which map from R"» x R"x x The nonlinear program (1) together with the uncertainty set

R"™ into R, R"f, and R"x, respectively. We assume the Jaco- (2) is a generalized semi-infinite program (GSIP) (Hettich &
bian dg/dx to be invertible everywhere, so that we can regard Kortanek, 1993) with differentiable functions 4 that map from

the state variables x as an implicit function of u and p, which we R x R™ x R" into RY. In this work we consider a subclass of
GSIP with the assumption that # is a differentiable scalar func-

tion. This definition of the uncertainty set in particular includes
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E-mail address: marquardt@lpt.rwth-aachen.de (W. Marquardt). variable p with expectation value p, variance—covariance matrix

0098-1354/$ — see front matter © 2007 Elsevier Ltd. All rights reserved.
doi:10.1016/j.compchemeng.2007.06.002


mailto:marquardt@lpt.rwth-aachen.de
dx.doi.org/10.1016/j.compchemeng.2007.06.002

1280 M. Diehl et al. / Computers and Chemical Engineering 32 (2008) 1279-1292

X, and a scalar y > 0 depending on the desired confidence level
(that is independent of u):

Peiipsa. = {peR™|(p— p)'Z 1 (p—p)—y < O}

Other types of smooth uncertainty sets used in robust optimiza-
tion also include confidence regions derived from the likelihood
ratio test (Rooney & Biegler, 2001).

In order to incorporate the uncertainty in the optimization
problem formulation, we choose the worst-case min—max for-
mulation of (1). For this aim we assume that the optimizer, that
chooses u first, has “nature” as an adverse player that chooses
afterwards p and x. Whatever u the optimizer chooses, for each
of the functions fi(x, u, p),i =0, ..., ny, the worst case, ¢;(u),
is chosen by the adverse player by selecting a suitable p € P:

¢i(up=max fi(w(u,p),u,p)
pEP(u)
(WC)

= max
z€R"z peR"P

fi(l'.,u,p) st {g(fﬁ, ’ll,,p) =0,
0

h(z,u,p) <

3

Note that the adverse player “nature” is restricted by both the
model equations g(x, u#, p) = 0 and the scalar inequality con-
straint h(x, u, p) < 0. Employing the functions ¢;(1) we arrive
at the following worst-case formulation that is often referred to
as the “robust counterpart” of (1) (cf. Ben-Tal & Nemirovskii,
2001):

(RC) m]kn do(u) s.t.¢im) <0, for i=1,...,ny.
u € R
4)

Due to the bi-level structure and the semi-infinite character, both
formulations (1) and (RC) pose challenges for their efficient
numerical solution. Different approaches to tackle these prob-
lems have been presented in a large number of articles. Methods
to solve GSIP include discretization of the uncertainty set P(u)
and the so called local reduction approach (Hettich & Kortanek,
1993). In both approaches the GSIP is approximated by a NLP
with a finite number of constraints. In discretization methods
problem (1) is solved on a finite grid of points Pw) c P(u)
within the uncertainty set. The local reduction approach is based
on the worst-case min—max formulation (RC). In this approach
the constraints are reduced to a finite number of restrictions by
considering only the (local) solutions of the inner maximization
problem (WC), which are implicitly defined by the necessary
conditions of optimality of (WC). In the locally reduced prob-
lem of (RC) then a finite number of worst cases within P(u)
is tracked. For a series of comprehensive review articles on
different solution strategies of GSIP-problems, including dis-
cretization and local reduction methods we refer to the recent
monograph (Reemtsen & Riickmann, 1998).

Approaches to problem (1) have also been addressed by
a number of articles on flexible and feasible process design.
Measures of feasibility and flexibility have been introduced by
Halemane and Grossmann (1983) and Swaney and Grossmann
(1985). In this approach the optimization variables are parti-
tioned into design and control variables. The design variables

are specified by the outer minimization problem 1. Flexibil-
ity and feasibility in the presence of parametric uncertainty is
addressed by formulating a nested max—min—max constraint for
the feasibility constraints f, where the control variables are cho-
sen by the minimization problem and the uncertain parameters
by the outer maximization problem. The flexibility and feasi-
bility measures were the basis for the development of various
robust optimization methods in a series of papers, e.g., atwo level
optimization approach (Bahri, Bandoni, & Romagnoli, 1996)
or an active set strategy (Mohideen, Perkins, & Pistikopoulos,
1996), which also considers worst-case dynamic disturbances.
A different approach to robust optimization not based on the
feasibility and flexibility measures was developed in a series
of papers by Monnigmann and Marquardt (2002, 2003, 2005).
In this approach parametric uncertainty is taken into account
by backing off the optimal design from critical boundaries in
the space of the uncertain parameters. It furthermore allows the
simultaneous treatment of feasibility and stability.

In this work we adopt the local reduction approach and
present a numerical approach for the solution of (RC). We
reformulate (RC) by introducing the necessary conditions of
optimality of the inner maximization problem (WC). Due to
the local character of the necessary conditions of optimal-
ity several worst-case points may exist for each function f;,
i=0,...,ny. Afterwards we simplify the resulting constraints
with the assumption that the worst-case point is always located
on the boundary of the uncertainty set P(«). Solving the result-
ing NLP is then equivalent to track worst-case solutions situated
on the boundary of the uncertainty set P(«). The local reduction
approach is an efficient approach to rigorously solve (RC) also in
case of a robust optimal control problem by tracking worst-case
trajectories.

The aim in robust optimal control is to find an optimal profile
of the manipulated variables such that none of the specified con-
straints are violated despite model uncertainties. Robust optimal
control is also addressed by robust nonlinear model predictive
control (NMPC). NMPC solves on-line repeatedly a dynamic
optimization problem on a shrinking time horizon (Diehl, Bock,
& Schloder, 2005; Nagy & Braatz, 2003; Terwiesch, Agarwal,
& Rippin, 1994) or on a moving horizon (Biegler, 2000; Binder
etal., 2001; Diehl et al., 2002). For an assessment of the state of
the art in this very active field we refer to Findeisen, Allgower,
and Biegler (2006). Robust optimal control and robust NMPC is
approached by Ma and Braatz (2001), Nagy and Braatz (2003),
and Diehl, Bock, and Kostina (2006). For robust optimization,
a linear or higher order approximation of the uncertain objec-
tive and constraints is used to faciliate the solution of the robust
counterpart NLP (RC), involving some approximation errors.
The algorithms of Ma and Braatz (2001) and Nagy and Braatz
(2003) contain comparisons with full nonlinear uncertainty sim-
ulations. However, there it is not indicated how to numerically
solve the exact robust counterpart NLP efficiently.

We have to mention here that the minimax approach for robust
open-loop optimization is often considered to be too conserva-
tive to be useful in practice, as discussed, e.g., by Morari (1983).
On the other hand the minimax approach allows to rigorously
quantify the profit loss that has to be paid for the robustification
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