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a b s t r a c t

The Gaussian process model (GPM) is a flexible surrogate model that can be used for

nonparametric regression for multivariate problems. A unique feature of the GPM is that a

prediction variance is automatically provided with the regression function. In this paper,

we estimate the safety margin of a nuclear power plant by performing regression on the

output of best-estimate simulations of a large-break loss-of-coolant accident with sam-

pling of safety system configuration, sequence timing, technical specifications, and ther-

mal hydraulic parameter uncertainties. The key aspect of our approach is that the GPM

regression is only performed on the dominant input variables, the safety injection flow rate

and the delay time for AC powered pumps to start representing sequence timing uncer-

tainty, providing a predictive model for the peak clad temperature during a reflood phase.

Other uncertainties are interpreted as contributors to the measurement noise of the code

output and are implicitly treated in the GPM in the noise variance term, providing local

uncertainty bounds for the peak clad temperature. We discuss the applicability of the

foregoing method to reduce the use of conservative assumptions in best estimate plus

uncertainty (BEPU) and Level 1 probabilistic safety assessment (PSA) success criteria defi-

nitions while dealing with a large number of uncertainties.

Copyright © 2016, Published by Elsevier Korea LLC on behalf of Korean Nuclear Society. This

is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).

1. Introduction

Safetymargin is an important concept for nuclear power plant

(NPP) design and safe operation. Adequate safety margin en-

sures that the plant design can withstand transients and ac-

cidents without fuel damage and the release of radionuclides

into the environment. Operationally, safety margin provides

flexibility allowing for optimization of plant operations and

maintenance, improving the safety, performance, and eco-

nomics of the plant. Accurate characterization of safety

margin has become increasingly important as many older

NPPs seek power uprates changing the design basis.
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A detailed safety analysis must be performed to determine

the safety margin of the NPP. The safety analysis can include

operational and experimental data from scaled separate ef-

fects tests and integral experimental facilities, design basis

accident (DBA) analysis, and probabilistic safety assessment

(PSA). Deterministic simulation of transients using best-

estimate thermal hydraulic computer codes is commonly

used. However, accurate characterization of the safetymargin

for all plant states and configurations over the plant lifetime

andall possible accident scenarios is extremely challenging, so

practical approaches such as incorporating conservative and

bounding assumptions must be implemented. Furthermore, if

large changes to the plant design basis such as a power uprate

or many small additive changes occur, a potentially large

number of safety analyses including computer simulations

must be redone. Accounting for the uncertainties of the com-

puter models adds an additional layer of complexity. Best es-

timate plus uncertainty (BEPU) methodologies have been

developed to address uncertainties in DBA analysis.

In this paper, we propose a methodology to make realistic

estimates of the safety margin, reducing the need for exces-

sive conservative and bounding assumptions in a safety

analysis. The methodology uses best-estimate computer

models to simulate a large (but manageable) number of tran-

sients that span a range of possible NPP safety system con-

figurations and timing of safety system actuation to resolve a

spectrum of plant responses during an accident. Simulta-

neously, many code input parameter uncertainties are

sampled representing technical specifications, limiting con-

ditions for operation, and thermal hydraulic model parameter

uncertainties. The methodology adopts the Gaussian process

model (GPM) to serve as a surrogate model used to charac-

terize the safety margin. The GPM performs multivariate

regression on the dominant input parameters, safety system

configuration and sequence timing, for a predictive model of

the safety parameter of interest, while modeling the other

uncertainty contributors implicitly as measurement noise

terms. The safety parameter probability distribution that can

be used to quantify the safety margin is expressed as the GPM

mean function and local uncertainty bounds defined by the

GPM prediction variance. The unique features of the GPM as a

nonparametric regression method with an automatic quan-

tification of prediction model uncertainty are key aspects of

the methodology.

This paper is organized as follows. Section 2 provides an

overview of GPMs for nonparametric regression analysis.

Specifically, the unique features of the GPM including the

prediction variance, covariance function selection, and

implementation issues are discussed. Section 3 presents the

MARS code [8] model of the reference plant (Hanul Units 3&4,

formerly known as Ulchin Units 3&4; one of the optimized

power reactor, OPR1000, series) used to simulate the injection

phase of a large-break loss-of-coolant accident (LBLOCA)

serving as the demonstration application for the methodol-

ogy. Section 4 presents the best-estimate simulation data of

the LBLOCA and the training process of the GPM. Section 5

presents an analysis and discussion of the safety margin re-

sults derived from the GPM. Finally, limitations of the pro-

posed methodology, future work and applications, and some

concluding remarks are provided in Section 6.

2. Gaussian process model

In the context of thermal hydraulic simulations of NPP acci-

dents, the best-estimate code ormodel can be interpreted as a

general nonlinear function of the form

y ¼ hðxÞ (1)

with a vector of inputs x ¼ ½x1; x2;…xp�T and a limiting safety

parameter of interest as the output variable y. The actual code

output from a simulation contains time histories of many

plant parameters from which any number of limiting safety

parameters can be obtained. However, for clarity we will

consider only a single output. A regression analysis can be

performed on a dataset from simulations {X ¼ [x1,…xn], y} to

estimate the functional relationship between the input vari-

ables and output variable. The dataset used in regression is

called the training set. The regression function becomes a

surrogate model to the best-estimate code and can be evalu-

ated many times with minimal computational cost to obtain

large samples used for uncertainty quantification, design

optimization, safety margin characterization, etc.

GPMs are a popular class of surrogate models that can be

used for multivariate regression. Rasmussen and Williams [1]

and their associated GPML code package [2] are prominent

resources on GPMs. Chapter 4 of Yurko [3] provides a nice

summary of and practical implementation recommendations

for GPMs. For consistency, we will generally follow the nota-

tion in Rasmussen and Williams [1] to present the mathe-

matical formulation of the GPM and describe the unique

features in the context of regression and characterizing large

datasets from computer simulations.

2.1. GPM mean function and prediction variance

The GPM is unique among regression methods because it de-

fines a predictive distribution of the dependent variable y at any

input test location x*. The GPM is fully defined by the mean

function and prediction variance. The predictive distribution

is assumed to be Gaussian parameterized by the mean func-

tion and prediction variance. The mean function and predic-

tion variance are

y ¼ fðx*Þ ¼ kT
*

�
Kþ s2

nI
��1

y (2)

V½fðx*Þ� ¼ kðx*;x*Þ � kT
*

�
Kþ s2

nI
��1

k* (3)

The predictive distribution for y is

y
���x* � N

�
fðx*Þ;V½fðx*Þ� þ s2

n

�
(4)

From the perspective of conventional regression analysis,

the mean function of Eq. (2) can be interpreted as the regres-

sion function approximating Eq. (1). The prediction variance

of Eq. (3) is an empirical estimate of the GPM prediction un-

certainty derived from the data measurement noise variance

s2
n, density of the training data set, and the complexity of the

inputs/output relationship estimated by the GPM. Although it

is not necessarily required, the GPM usually assumes a zero

mean so the vector of data output y has been shifted by its
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