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a b s t r a c t

Global concern and interest in the safety of nuclear power plants have increased consid-

erably since the Fukushima accident. In the event of a severe accident, the reactor vessel

water level cannot be measured. The reactor vessel water level has a direct impact on

confirming the safety of reactor core cooling. However, in the event of a severe accident, it

may be possible to estimate the reactor vessel water level by employing other information.

The cascaded fuzzy neural network (CFNN)model can be used to estimate the reactor vessel

water level through the process of repeatedly adding fuzzy neural networks. The developed

CFNN model was found to be sufficiently accurate for estimating the reactor vessel water

level when the sensor performance had deteriorated. Therefore, the developed CFNNmodel

can help provide effective information to operators in the event of a severe accident.

Copyright © 2016, Published by Elsevier Korea LLC on behalf of Korean Nuclear Society. This

is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).

1. Introduction

Global concern and interest in the safety of nuclear power

plants (NPPs) have increased considerably since the Fukush-

ima accident. In that severe accident,many of the functions of

instrumentation and monitoring systems were lost and the

plant operators could not monitor the important plant vari-

ables for plant safety [1].

Efficient management of a serious accident requires ac-

curate observation of the key parameters (e.g., reactor vessel

water level and hydrogen concentration) during the very brief

elapsed time of the initial events in order to establish the

scenario and determine the initial events that led up to the

accident [1]. In particular, it is extremely important to

determine the safety-related parameters and critical infor-

mation during the extremely short period following a loss of

coolant accident (LOCA) and steam generator tube rupture

(SGTR).

The reactor vessel water level is essential information for

confirming the cooling capability of the reactor core in order to

prevent the core from melting down and effectively manage

severe accidents. Proper measurement of the reactor vessel

water level cannot be guaranteed in severe accidents where

the reactor core integrity is uncertain. Therefore, estimating
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the reactor vessel water level is important to develop mea-

sures against severe accidents.

While physics-based models need detailed physical

models of a plant that are difficult to derive, the data-based

models of cascaded fuzzy neural network (CFNN) do not.

Also, they can use a large number of NPP thermohydraulic

code simulation results for safety analysis carried out exten-

sively. However, the technique has the disadvantage that the

estimation accuracy depends on the quality of the results

retrieved from thermohydraulic code simulations that cover a

wide range of plant operating conditions. Many artificial in-

telligence techniques have been successfully used in nuclear

engineering applications, such as signal validation [2e4], plant

diagnostics [5,6], and event identification [7e10]. This paper

proposes a CFNN model to estimate the reactor vessel water

level, which has a direct impact on important times (e.g., time

before the core exit temperature exceeds 650 �C, core uncov-

ery time, reactor vessel failure time) and is important for

confirming the reactor core coolability.

The CFNN can be used to estimate the reactor vessel water

level value through the process of repeatedly adding fuzzy

neural networks (FNNs). The CFNN is a simple extension of

FNNs. It has previously been applied to estimating the de-

parture from nucleate boiling ratio [11] in nuclear engineering

and is expected to provide superior performance. The LOCA

break size and other measured signals are used to estimate

the water level. The LOCA break size is not a measured vari-

able; instead, it is estimated by using the trend data for a short

time before an event that proceeds to a severe accident. The

classification algorithm for determining the LOCA break po-

sition and LOCA break size estimation algorithm are

explained in previous papers [12e15]. Because the LOCA break

size can be accurately estimated by previously developed

methods, the LOCA break size can be used as an input variable

for estimating the reactor vessel water level.

The CFNN model is a data-based model that requires data

for development and verification. Because real severe accident

data do not exist, the data required by the proposed model

need to be obtained by using numerical simulations. The data

were obtained by simulating severe accident scenarios for the

Optimized Power Reactor 1000 (OPR1000) by using modular

accident analysis program (MAAP)4 code [16].

2. CFNN

The CFNN model contains two or more FNN modules. The

CFNN estimates a relevant variable through the process of

repeatedly adding an FNN. Fig. 1 shows the architecture of the

CFNN model. Each FNN module contains fuzzification, fuzzy

inference, and training units.

2.1. FNN module

The conditional rule, which is described as an ifethen rule, is

generally used in the fuzzy inference system (FIS). It com-

prises a pair: the antecedent and consequent [17]. In this

study, the TakagieSugeno-type FIS [18] was used. This does

not need a defuzzifier in the output terminal because its

output is a real value.

In Eq. (1), an arbitrary ith fuzzy rule can be expressed as

follows (first-order TakagieSugeno type):

If x1ðkÞ is Ai1ðkÞ AND/AND xmðkÞ is AimðkÞ;
then yiðkÞ is f iðx1ðkÞ;/; xmðkÞÞ

(1)

where

x1,/,xm: FIS input values

m: number of input variables

Ai1(k),/,Aim(k): fuzzy sets of the ith fuzzy rule

yi: outputof the ith fuzzy rule

The function f iðx1ðkÞ;/; xmðkÞÞ is expressed by the

following first-order polynomial of input variables:

f iðx1ðkÞ;/; xmðkÞÞ ¼
Xm
j¼1

qijxjðkÞ þ ri (2)

where

qij: weight of the ith fuzzy input variable

ri: bias of the ith fuzzy rule.

Eq. (2) expresses a first-order TakagieSugeno-type FIS. Na

input and output data zT(k) ¼ [xT(k), y(k)] {xT(k) ¼ [x1(k),

x2(k),/,xm(k)], k¼ 1, 2,/, Na} are assumed to be available, and

the input and output variables are normalized.

The membership function of the fuzzy sets Ai1(k),/,Aim(k)

for the ith fuzzy rule is denoted as mi1(x1),/,mim(xm). In general,

there is no special restriction on the shape of themembership

functions. In this study, the symmetric Gaussianmembership

function was used to reduce the number of parameters for

optimization:

mij

�
xjðkÞ

� ¼ e
�ðxjðkÞ�cijÞ2

.
2s2

ij (3)

The Gaussian membership function has a characteristic

symmetric bell curve shape that falls towards zero. The

parameter cij indicates the center position of the peak, and sij
determines the width of the bell shape in Eq. (3).

The FIS output byðkÞ is calculated by weight-averaging the

fuzzy rule outputs yi(k) as follows:

1 2

Fig. 1 e Cascaded fuzzy neural network (FNN).
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