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a b s t r a c t

In the present paper, development of the three-dimensional (3D) computational code based

on Galerkin finite element method (GFEM) for solving the multigroup forward/adjoint

diffusion equation in both rectangular and hexagonal geometries is reported. Linear

approximation of shape functions in the GFEM with unstructured tetrahedron elements is

used in the calculation. Both criticality and fixed source calculations may be performed

using the developed GFEM-3D computational code. An acceptable level of accuracy at a low

computational cost is the main advantage of applying the unstructured tetrahedron ele-

ments. The unstructured tetrahedron elements generated with Gambit software are used

in the GFEM-3D computational code through a developed interface. The forward/adjoint

multiplication factor, forward/adjoint flux distribution, and power distribution in the

reactor core are calculated using the power iteration method. Criticality calculations are

benchmarked against the valid solution of the neutron diffusion equation for International

Atomic Energy Agency (IAEA)-3D and Water-Water Energetic Reactor (VVER)-1000 reactor

cores. In addition, validation of the calculations against the P1 approximation of the

transport theory is investigated in relation to the liquid metal fast breeder reactor

benchmark problem. The neutron fixed source calculations are benchmarked through a

comparison with the results obtained from similar computational codes. Finally, an

analysis of the sensitivity of calculations to the number of elements is performed.
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1. Introduction

Numerical methods have played a vital role in science and

engineering in terms of solving and analyzing problems. So-

lutions to engineering problems can more easily be achieved

with the help of computers. The importance of numerical

methods in an analysis is due to several factors. First, most

natural phenomena can best be described by differential

equations with varying boundary conditions the solutions of

which cannot be obtained by analytical means, except in very

simple cases. Significant improvements have been made in

various numerical techniques such that problems can be

solved at a low cost and within a short span of time. Due to the

absence of automatic computation, progress in the develop-

ment of numerical methods was quite slow before the 1940s.

With the arrival of high-speed computers, engineers and sci-

entists succeeded in exploiting numerical methods. During the

mid-1950s, the finite element method grew out of a number of

intuitive procedures and associated mathematical techniques.

Prior to its conception, the finite difference method held a

dominant position in the numerical solution of continuum

problems [1,2]. Today, both of these methods are equally

important and have their own advantages and disadvantages.

However, certain problems are more amenable to the finite

element method than to the finite difference method. Other

numericalmethods, such as nodal [3e5] and finite volume [6,7],

may also be used to solve neutron diffusion equations.

The finite element method is a computational technique for

obtaining approximate solutions to the partial differential

equations that arise in scientific and engineering applications. It

is a general technique for constructing approximate solutions to

theboundary valueproblems.Themethods involve dividing the

domains of a solution into a finite number of elements. Varia-

tional schemes employing a weighted residual approach or an

extremum principle-based approach are used to construct an

approximate solution over the collection of finite elements.

Owing to the generality and richness of the ideas underlying the

method, it has been used with remarkable success in solving a

wide range of problems in virtually all areas of engineering and

sciences. In contrast to the older finite difference methods that

are usually based on differential formulations, the finite

element method is based on integral formulations. In the finite

element method, the solution is approximated by local piece-

wise polynomial trial functions within an element. Expansion

coefficients are then determined by applying either weighted

residual or variational approaches. Finite elements have been

utilized in different ways to solve neutron diffusion equations.

In some formulations a weighted residual approach is adopted,

while in others variational approaches are considered, with a

combination of the applications of the finite elements to one or

more of the independent variables. In the weighted residual

approach, the integral form of the original integrodifferential

equation is considered and expanded in a set of finite element

basis functions. The integral form isobtainedbymultiplying the

original equation by an arbitrary weighting function. If the

arbitrary weighting functions are the finite element basis func-

tions, then the approach is called the Galerkin technique [8].

The neutron diffusion theory is the most widely used

method in the analysis of criticality of nuclear reactors.

Consideration of criticality is generally referred to as an

eigenvalue problem for the multigroup neutron diffusion

equation for which the solution provides the eigenvalue effec-

tive multiplication factor, neutron flux distribution, and power

profiles in reactor cores. An adequate calculation may be ob-

tained from the solution of a three-dimensional (3D) neutron

diffusion equation using the aforementioned numerical

methods. The finite element method has always been a

fundamental numerical technique in reactor core calculations.

It has continuously been improved over decades, starting from

primal implementation in neutron diffusion equations up to

modern implementations with RaviarteThomas, hybrid, h-

adaptivity, and response matrix bases [9e11].

In general, inmost applications, thefinite elementmethod is

preferred to its principal alternative, the finite difference

method, due to its flexibility in the treatment of curved or

irregular geometries and the high rates of convergence attain-

ableby theuseofhigh-orderelements. Several researchershave

tried to develop convenient methods for solving 3Dmultigroup

neutrondiffusion equations using finite elementmethods in 3D

geometries. For example,Wangand collogues [11] presented 3D

h-adaptivity for multigroup neutron diffusion equations. The

solution of partial differential equations obtained using adap-

tive mesh refinement gives significantly higher accuracy at a

reduced numerical cost. In another paper, H�ebert [9] presented

how the RaviarteThomaseSchneider finite element method

was implemented for solving the diffusion equation in hexag-

onal 3D geometry. The RaviarteThomaseSchneider method

was based on a dual variational formulation defined over loz-

enges with a Piola transformation of the polynomial basis. An

efficient Alternating Direction Implicit (ADI) numerical tech-

nique was set up to solve the resultingmatrix system.

In the present study, the Galerkin finite element method

(GFEM) [12], a weighted residual method, is used to solve the

multigroup neutron diffusion equation in any arbitrary 3D

geometries such as rectangular and hexagonal reactor cores.

The unstructured tetrahedron elements generated by Gambit

are used to discretize the equations. Indeed, a key advantage

of the unstructured tetrahedron elements is their superiority

inmapping the curved boundaries or material interfaces in 3D

geometries. In addition, the running time of computation code

and the accuracy of the calculation may be optimized using

proper unstructured tetrahedron elements. For several rea-

sons, such as precision and simplicity, the Galerkin method

has been used widely in the development of computer codes

for solving diffusion or transport equations in different ge-

ometries [12,13]. The main advantage of the GFEM is that the

definition of boundary conditions in thismethod is easier than

that in the other methods [14]. The mentioned reasons

convinced us to use the GFEM for solving the multigroup for-

ward/adjoint neutron diffusion equation in 3D geometries.

An outline of the remainder of this contribution is as fol-

lows: In Section 2, we briefly introduce the numerical solution

of the multigroup neutron diffusion equation in 3D geome-

tries used to solve the forward/adjoint neutron diffusion

equation. Section 3 presents the main specification of the

IAEA-3D [15], VVER-1000 [16], and liquid metal fast breeder

reactor (LMFBR) [17] benchmark problems. Numerical results

and an analysis of the sensitivity of calculations to the
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