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a b s t r a c t

It had been disputed how to apply wall drag to the dispersed phase in the framework of the

conventional two-fluid model for two-phase flows. Recently, Kim et al. [1] introduced the

volume-averaged momentum equation based on the equation of a solid/fluid particle

motion. They showed theoretically that for dispersed two-phase flows, the overall two-

phase pressure drop by wall friction must be apportioned to each phase, in proportion to

each phase fraction. In this study, the validity of the proposed wall drag model is

demonstrated though one-dimensional (1D) simulations. In addition, it is shown that the

existing form loss model incorrectly predicts the motion of the dispersed phase. A new

form loss model is proposed to overcome that problem. The newly proposed form loss

model is tested in the region covering the lower plenum and the core in a nuclear power

plant. As a result, it is shown that the newmodels can correctly predict the relative velocity

of the dispersed phase to the surrounding fluid velocity in the core with spacer grids.

Copyright © 2015, Published by Elsevier Korea LLC on behalf of Korean Nuclear Society.

1. Introduction

Most thermal-hydraulic codes for nuclear reactor safety

analysis are based on two-fluid equations which are obtained

by averaging the local instantaneous conservation equations

in time, space, or some combination of the two. A key

assumption in the standard two-fluid model is that even a

dispersed phase is treated as a continuous phase. Therefore,

the same averaging process is applied to both phases.

However, that assumption may yield physically-incorrect

predictions. One example is the wall drag treatment in the

one-dimensional momentum equation for dispersed flows.

The methods of determining the wall drag acting on the

dispersed phase vary from code to code. The TRACE [2],

CATHARE [3], and COBRA-TF [4] do not consider the wall drag

force for the dispersed phase based on observations that most

droplets/bubbles do not touch the wall. However, this wall

drag treatment causes the dispersed phase to be faster than

the carrier in a fully-developed horizontal bubbly flow in a

pipe with constant area for which two phase velocities are

considered to be equal. The local bubble velocity must not

exceed the local water velocity in a fully-developed horizontal

* Corresponding author.
E-mail address: byoungjae@kaeri.re.kr (B.J. Kim).

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://
creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any me-
dium, provided the original work is properly cited.

Available online at www.sciencedirect.com

ScienceDirect

journal homepage: ht tp: / /www.journals .e lsevier .com/nuclear-
engineer ing-and-technology/

Nu c l E n g T e c h n o l 4 7 ( 2 0 1 5 ) 4 1 6e4 2 3

http://dx.doi.org/10.1016/j.net.2015.01.005
1738-5733/Copyright © 2015, Published by Elsevier Korea LLC on behalf of Korean Nuclear Society.

mailto:byoungjae@kaeri.re.kr
http://creativecommons.org/licenses/by-nc/3.0
http://creativecommons.org/licenses/by-nc/3.0
www.sciencedirect.com/science/journal/17385733
http://www.journals.elsevier.com/nuclear-engineering-and-technology/
http://www.journals.elsevier.com/nuclear-engineering-and-technology/
http://dx.doi.org/10.1016/j.net.2015.01.005
http://dx.doi.org/10.1016/j.net.2015.01.005
http://dx.doi.org/10.1016/j.net.2015.01.005


bubbly flow in a pipe with constant area [5,6]. Thus, the wall

drag must not be set to zero. The RELAP5 [7] imposes a wall

drag force on the bubbles based on the wetted perimeter

concept, but the magnitude of the wall drag for the bubbles is

even smaller than the physically-correct value.

A question is then raised: what value should we assign to

the wall drag force for the dispersed phase? To answer this

question, Kim et al. [1] considered different one-dimensional

momentum equations based on the equation of a fluid parti-

cle motion. They insisted that the magnitude of the wall drag

force acting on each phase is the phasic volume fraction

multiplied by the overall two-phase pressure drop induced by

the interaction between the continuous phase and the wall.

Meanwhile, the form loss designates the loss of mo-

mentum due to obstruction or flow separation in nonstraight

channels in which the flow area changes abruptly or the pipe

is being bent. The existing form loss formulation for a two-

phase flow takes the form similar to that used for a single-

phase flow. However, such formulation incorrectly predicts

the bubble/droplet velocity against the surrounding fluid

velocity.

The purpose of this study is to demonstrate the validity of

the wall dragmodel proposed by Kim et al. [1], and to propose

a new form lossmodel for dispersed flows. The concept of the

wall drag and form loss are needed only for one-dimensional

modeling. Therefore, various one-dimensional simulations

were performed using the SPACE code [8] in order to validate

the proposed wall drag and form loss models. Fundamental

tests were performed in a pipe, contraction, and expansion to

validate the new wall drag model. In addition, separate effect

tests were carried out in the region covering the lower

plenum and the core with grid spacers in a nuclear power

reactor, to demonstrate the validity of the new form loss

model.

2. Wall drag and form loss for dispersed flow

2.1. Wall drag

This section summarizes the work done by Kim et al. [1].

Unless phase change is considered, the standard volume-

averaged momentum equation for phase k can be written as

[9]:

akrk
vvk

vt
þ akrkvk,Vvk þ V,

�
akt

Re
k

�
¼ �akVpk þ V,ðaktkÞ � f ik þ akrkg; (1)

where ak, rk, vk, pk, tk, f ik, tRek , and g are the volume fraction,

density, velocity vector, pressure, viscous stress tensor,

interface force, volume-averaged Reynolds stress, and gravi-

tational acceleration, respectively.

Meanwhile, based on the equation of a solid/fluid particle

motion [10,11], the volume-averagedmomentum equation for

an adiabatic dispersed two-phase flow is derived as follows

[1,12e14]:

akrk
vvk

vt
þ akrkvk,Vvk þ V,

�
akt

Re
k

�
¼ �akVpc þ akV,tc � f ik þ akrkg: (2)

Each variable is a volume-averaged quantity. Subscripts

d and c are used to indicate the dispersed and continuous

phases, respectively.

Comparing Eq. (2) with Eq. (1), one can notice the differ-

ences in the second terms on the right-hand sides: (1) ak is

outside the divergence operator with regard to the viscous

stress tensor, whereas it is inside the divergence operator in

Eq. (1); and (2) the dispersed phase equation is expressed in

terms of the pressure and viscous stresses for a continuous

phase instead of those for a dispersed phase.

Eq. (2) reduces to the following one-dimensional equation:

akrk
vvk

vt
þ akrkvk

vvk

vx
¼ �ak

vp
vx

� akFwt � fik þ akrkgx: (3)

Each of the variables are one-dimensional volume-aver-

aged quantities. The x-direction is the main flow direction. pc
is expressed by p. tRe

k is neglected because of one-dimensional

modeling. fik is the interface force acting on phase k. In Eq. (2),

V,tc is the divergence of the volume-averaged viscous

stresses. Thus, it is evaluated as:

V,〈tc〉 ¼ 〈V,tc〉 ¼ �Fwt; (4)

where 〈 〉 means the volume averaging over the control vol-

ume. Fwt is the overall pressure drop induced by the shear of

the continuous phase at the wall, which is defined to be a

positive value. Consequently, the term �akFwt in Eq. (3) in-

dicates that the overall two-phase pressure drop by wall

friction is apportioned to each phase in proportion to each

phase fraction. This wall drag partition model correctly pre-

dicts the relative motion of a bubble/droplet against the sur-

rounding fluid. For a steady horizontal bubbly flow, the

bubbles become faster than the water in a contraction

whereas the bubble becomes slower in an expansion. For a

steady horizontal droplet flow, the droplet is slower than the

gas in a contraction whereas the droplet is faster in an

expansion. These behaviors are attributed to the fact that

compared with the lighter fluid, the heavier fluid slowly ac-

celerates or decelerates in response to the changes in cir-

cumstances. Of course, two velocities become equal for a

fully-developed flow in a pipe with constant area. A detailed

theoretical discussion is described in Kim et al. [1].

2.2. Form loss

The form loss designates the loss of momentum due to an

obstruction or flow separation in nonstraight channels in

which the flow area changes abruptly or the pipe is being bent.

The contribution of the form loss is usually added to the one-

dimensional momentum equation as follows:

akrk
vvk

vt
þ akrkvk

vvk

vx
¼ �ak

vp
vx

� akFwt � fik þ akrkgx

� Kk

2L
akrk

����vk

����vk: (5)

The last term accounts for the form loss, where Kk is the

form loss factor for phase k in the channel length L. Consider a

fully-developed horizontal bubbly flow at the region in which

Kk has a nonzero value whereas the flow area remains un-

changed. This situation may be encountered at the bending
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