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a b s t r a c t

Recently, severe accidents in nuclear power plants (NPPs) have become a global concern.

The aim of this paper is to predict the hydrogen buildup within containment resulting

from severe accidents. The prediction was based on NPPs of an optimized power reactor

1,000. The increase in the hydrogen concentration in severe accidents is one of the major

factors that threaten the integrity of the containment. A method using a fuzzy neural

network (FNN) was applied to predict the hydrogen concentration in the containment.

The FNN model was developed and verified based on simulation data acquired by

simulating MAAP4 code for optimized power reactor 1,000. The FNN model is expected to

assist operators to prevent a hydrogen explosion in severe accident situations and

manage the accident properly because they are able to predict the changes in the trend of

hydrogen concentration at the beginning of real accidents by using the developed FNN

model.

Copyright © 2015, Published by Elsevier Korea LLC on behalf of Korean Nuclear Society.

1. Introduction

Recently, severe accidents in nuclear power plants (NPPs)

have become a global concern. In the event of severe acci-

dents, themajor safety parameters of nuclear reactors change

rapidly during the initial stages, leaving operators with

insufficient time to devise an appropriate response. The effi-

cient management of a serious accident requires observation

of the key parameters during the very brief duration of initial

events by establishing scenarios and initial events leading up

to the accident. In particular, it is extremely important to

determine safety-related parameters and critical information

during the extremely short period following a loss of coolant

accident (LOCA) and steam generator tube rupture (SGTR).

This would enable verification of NPP status and determina-

tion of appropriate corrective action.

In case of severe accidents, the NPP operators are con-

cerned about hydrogen explosion due to hydrogen accumu-

lation in containment. Hydrogen is accumulated in

containment by leakage from the primary pressure boundary.
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Therefore, this work considered severe incidents that were

caused by LOCAs, which were analyzed by using data from

optimized power reactor 1,000 (OPR1000). The work aimed to

predict the hydrogen concentration in the event of a severe

accident. The increase in the hydrogen concentration is one of

the factors threatening the integrity of the containment. The

hydrogen inside the containment is generated by the radio-

activation of water in the atmosphere, corrosion of the inner

material of the containment by containment spray, and re-

action of steam with the zirconium cladding. Maintaining the

integrity of the containment by preventing the hydrogen

within from exploding would require the local hydrogen

concentration to be retained below 4%.

Therefore, in this study, various artificial intelligence (AI)

methods were examined to predict changes in the hydrogen

concentration. It was determined that a method using a fuzzy

neural network (FNN) was the most suitable for predicting the

hydrogen concentration. A number of AI techniques have

been applied successfully to a variety of research fields of

nuclear engineering, such as signal validation [1e3], plant

diagnostics [4e7], event identification [8e10], and smart

sensing (or function approximation) [11e13]. Many of the

previous works used fuzzy inference systems (FISs) and neu-

ral networks (NNs). Jang and Sun [14] demonstrated the

functional equivalence between NNs and FISs in cases when

the activation functions of the NNs and the membership

function of the FIS are the same.

An FNN is a data-based model that requires data for its

development and verification. As data from real severe acci-

dents do not exist, it is necessary to use numerical simula-

tions to obtain the required data for the proposed model. The

FNN model was verified based on the NPP simulation data

acquired using MAAP4 code [15]. The successful management

of NPPs as a result of the ability to rapidly predict safety-

critical parameters during real accidents could lead to the

safekeeping of NPPs.

2. Fuzzy neural network

Fuzzy theory has been studied in an attempt to use a mathe-

matical approach to prove the inaccuracy in human thoughts

and actions. The FIS has been produced based on the concepts

of intelligent learning and inference. An FNN model consists of

an FIS combined with its neuronal training system.

2.1. Fuzzy inference system

FIS generally uses conditional rules that comprise the if/then

rules of the antecedent part and consequent part, and it is one

of the methods of AI [3]. Both the antecedent and consequent

parts have membership functions capable of fuzzifying crisp

values. In most cases, the Gaussian, triangular, trapezoid,

and bell-shaped functions are used in the membership

function formula.

Fig. 1 shows a pictorial sketch of the FIS principle [16]. The

FIS output should be a real value that requires defuzzifying

prior to forming the FIS output. Using a Takagi-Sugeno-type

FIS that does not require the defuzzifier, an arbitrary i-th

rule can be expressed as follows [17]:

If x1ðkÞ is Ai1ðkÞ AND/ AND xmðkÞ is AimðkÞ; then

byiðkÞ is fi½x1ðkÞ; / ; xmðkÞ�
(1)

where xjðkÞ is the input variable to the fuzzy inference model

(j ¼ 1; 2;…;m; m is the number of input variables), AijðkÞ is

the membership function of the jth input variable for the ith

fuzzy rule (i ¼ 1; 2;…;n; n is the number of rules), and byiðkÞ is
the output of the ith fuzzy rule. In Equation 1, the function

fi½x1ðkÞ;/; xmðkÞ� represents a function of input variables. The

membership functions of the fuzzy sets Ai1;/;Aim for the ith

fuzzy rule are denoted as ai1ðx1Þ;/;aimðxmÞ, respectively.
The number of N input and output training data of the

fuzzy model zTðkÞ ¼ ½xTðkÞ; yðkÞ� (where xTðkÞ ¼ ½x1ðkÞ;
x2ðkÞ;/; xmðkÞ� and k ¼ 1; 2; /;Nai1) were assumed to be

available and the data point in each dimension was normal-

ized. A Gaussian membership function was used because of

the ability of this function to reduce the number of parameters

to be optimized. Using a TakagieSugeno-type FIS, the output

of the FIS can be expressed as follows [17]:

byðkÞ ¼ Xn
i¼1

ywiðkÞ (2)

where

ywiðkÞ ¼ wiðkÞfi½xðkÞ� (3)

wiðkÞ ¼ wiðxðkÞÞPn
i¼1 wiðxðkÞÞ

(4)

wiðkÞ ¼
Ym
j¼1

aij

�
xjðkÞ

�
(5)

aij

�
xjðkÞ

� ¼ e
�ðxj ðkÞ�cijÞ2

2s2
ij (6)

In Equation 3, the function fi½xðkÞ� is expressed as the first-

order polynomial of input variables for the ith fuzzy rule, and

the output of each rule is expressed as follows:

fi½xðkÞ� ¼
Xm
j¼1

bijxjðkÞ þ bi (7)

where bij is the weight of the ith fuzzy rule and the jth input

variable, and bi is the bias of the ith fuzzy rule.

Therefore, in this case the FIS is referred to as a first-order

Takagi-Sugeno-type FIS, because in the arbitrary ith fuzzy rule

output, fi is a real value and is expressed as the first-order

polynomial for the inputs.

Fig. 2 shows the calculation procedure of the FIS. The first

layer indicates the input nodes that directly transmit the
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Fig. 1 e Fuzzy inference system (Mamdani-type).
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