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1.	 INTRODUCTION

In Korea, since the first nuclear power plant was built 
in 1978, 22 plants have been running, playing an impor-
tant role by generating about 23% of total domestic elec-
tric power. In the case of the steam generator of Gori-1, 
which was exchanged in 1989, various types of corrosion 
have been experienced such as pitting, SCC (stress corro-
sion cracking), and wear, etc. The succeeding plants also 
have had various types of corrosion problems though this 
is now better managed [1].

Vibrations generated by fluid have three causes: fluid-
elastic instability, forced vibration with unsteady pressure 
fluctuation originating from turbulence, and the periodic 
vibration with vortex shedding on the heat pipe around the 
steam generator can cause the wear or the fatigue fracture, 
finally resulting in the failure of SG (steam generator) [2]. 
Cracks of heat pipe and TSP (tube support plate) caused 
by various microscopic factors like chemicals and sludge 

deposits [3], but one of the primary factors to consider is 
fretting wear [4] in the combination of the tube and TSP. 

In this research, we studied a simplified U-tube model 
for further simulation in the future. An experimental re-
duced scale model was constructed, and a fully coupled 
multi-physical analysis of fluid-structure interaction with 
commercial codes based on ANSYS workbench was 
carried out. The primary water circulation system was 
focused on as a source of the forced vibration, and the 
present numerical method is validated for this simplified 
model.

2. 	 METHODS OF RESEARCH

2.1 Numerical Method
The pressure drop is directly related to surface rough-

ness, which is a function of the Reynolds number and 
the roughness ratio, defined as the ratio between rough-
ness and tube diameter. For the analysis of primary water, 
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three-dimensional unsteady incompressible Navier-Stokes 
equations are used:

In Eqs. (1~2), V is velocity vector; p is pressure; ρ and 
μ are density and viscosity, respectively. No-slip boundary 
condition is applied at the tube wall; the inlet condition is 
specified as a mean flow rate and a given fluctuation; the 
outlet boundary is set as the ambient pressure. Addition-
ally, k-ω SST (Shear Stress Transport) turbulence model 
is used for the turbulent intensity of 5% for the incident 
flow [5].

For the analysis of the structural dynamics of the tube, 
the following equations are used [6]:

where the elastic stiffness matrix is defined as

In Eqs. (3~4), fV is the external force per unit volume, 
which is integrated from the fluid pressure at the wall; 
E and ν are Young's modulus and Poisson's ratio (which 
should be constant in this study) respectively. The time 
rate of strain is expressed with the velocity components 
of tube elements.

In Eq. (5), the velocity components on the right hand 
side can be obtained from the structural deformation from 
the strain field. Fig. 1 is the procedure for the computation 
of fluid-structure interaction. The finite element model 
uses shape and node information in common. Under the 
boundary conditions, the flow field is computed, and then 
the effective mass distribution is exerted onto the tube 
structure for the consideration of the mass of internal and 
external fluid. After the common nodal points are set for 
the data exchange between fluid and structure, the system 
coupling to both sides is used in every time step in Eqs. 
(1~5) to describe the deformation of structure.

2.2 Surface Roughness
For a straight tube with a constant inner diameter and 

a cross-sectional shape, the correlation of the Darcy friction 
factor, f with the Reynolds number and roughness ratio, 
ε/d [7].

The plot of Eq. (6) is given in given in the Moody 
chart in Fig. 2. This correlation is valid only for the rigid 
pipes without vibration or deformation of the wall. By 
changing the parameters, we can obtain the numerical 
values of Fig. 2 where ANSYS-FLUENT is used for nu-
merical computation.

The result is very sensitive to the grid scale, especially 
the vertical size of the first grid, Δy, which is expressed 
with a dimensionless parameter:

where uT is the transformed velocity component of the 
tangential direction of the wall.  To get the proper values 
coinciding with Eq. (6) in the parametric plane of Fig. 2, 
the dimensionless wall distance should be guaranteed as 
y+<1 in the whole computational domain. For example, 
when the computational domain is a pipe of 20 mm di-

Fig. 1. Procedure of Multi-Physical Computation

Fig. 2. Darcy Friction Factor vs. Reynolds Number
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