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a b s t r a c t

The severe effects of several types of noise present in tomographic image reconstruction are well known.
Some of these are a consequence of the ill-posedness of this inverse problem. In this work, we investigate
the impact of a Tikhonov regularization on the solution of a gamma-ray tomography reconstruction by
means of a least squares numerical method. The theoretical methodology is considered in a broad sense
as a Tikhonov regularization, but also includes the Morozov concept used specifically for the delta
parameter control. The reconstruction quality shows effective improvement when this technique is
applied to simple gamma-ray tomography algorithms. Furthermore, the impact of these regularization
techniques on the solutions of linear systems of equations is significant. An ART (Algebraic Recon-
struction Technique)-type algorithm was used for the reconstruction of simulated data utilizing built-in
Matlab functions. These were compared with data obtained through a regularization implemented with
TSVD (Truncated Singular Value Decomposition), as well as data obtained through hybrid algorithms
such as TSVD plus Toepelitz, tridiagonal and identity operators. The quality of the resulting recon-
struction is evaluated through RMSE (Root Mean Square Error). Direct comparisons suggest that for a
high noise level and high delta parameter the TSVD plus tridiagonal operator is the best choice.

Published by Elsevier Ltd.

1. Introduction

Tomography has since the 1930s been used for nondestructive
evaluation of materials in different areas, including medical and
industrial applications. This evaluation is performed by inspecting a
representation of the object's density distribution function in the
interior of its vessel's section, usually an image representation,
which takes advantage of the relation that exists between the
density distribution and the attenuation or perturbation suffered
by any penetrating wave, such as magnetic resonance, ultrasound,
electrical capacitance, radioactive emission, seismic, etc. This pro-
cess of image reconstruction is modeled as an inversion of the
Radon Transform, which basically represents the physical experi-
ment of producing attenuation values out of beams crossing the

vessel plus object. There are a number of reconstruction methods
divided in different types, such as analytical, algebraic, iterative and
statistical (see Gordon et al., 1970; Kak and Slaney, 2001e2007;
Maad et al., 2008; Maad, 2009; Melo et al., 2007). It is well
known that this type of inverse problem is ill-posed in the Hada-
mard's sense (see Hadamard, 1902), for which the solution for a
well posed problem should exist, be unique and continuously
dependent on the initial data (stability). Inverting Radon Transform
becomes even more ill-posed as the number of views and beams
per view decreases. In addition, there is a certain amount of error
real experiments which are prone to. The reconstruction results in
this scenario, which is even harsher in the industrial applications,
end up presenting an error level which is unbounded even when
the input error is bounded. The conventional solution to this has
been an image pre- or post-processing, but superior results have
been achieved through regularization, that consists in finding an
approximation to the density distribution, which is the solution to a
similar problemwhere the output error is continuously dependent
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on the input error. There are several types of regularization, which
have been applied to different types of tomography modalities: EIT
(Electrical Impedance Tomography): Hua et al. (1991), Binley et al.
(1995), Adler and Guardo (1996), Vauhkonen et al. (1998),
Stephenson et al. (2005), Karsten and Helmut (2005), Borsic et al.
(2010); ECT (Emission Computed Tomography): Lee (2003),
Burger et al. (2014); X-ray Tomography: Titarenko et al. (2010);
and Gamma-ray Tomography: Azzi et al. (1991), Dantas et al.
(2008), among others.

In a previous work (Santos et al., 2011), relevant gammametric
information from a gasesolid flow in a riser was extracted out of
raw noisy data through a PCA (Principal Component Analysis)
method. In this work we investigate the impact of a Tikhonov
regularization on the solution of a gamma-ray tomography recon-
struction by means of a least squares numerical method. An image
reconstruction based on algebraic computational algorithm (ART e

Gordon et al., 1970) involving sparse under- and over- determined
linear system of equations is analyzed. Built-in functions of Matlab
software were applied and optimal solutions were investigated.
Experimentally a section of the tube is scanned from various po-
sitions and at different angles. The solution, to find the coefficients
vector m, from the vector of measured p values through the W
matrix inversion, constitutes an inverse problem. Such a solution is
often required in industrial process tomography in presence of
experimental noise and aiming at a shorter time resolution. The
definition of Hadmard's inverse problem is considered, as well as
the requirement of a well posed problem to find stable solutions.
The formulation of the basis function and the algorithm used to
structure the weight matrix are discussed. For a full rank weight
matrix, the obtained solution is unique, as expected. In a previous
work by Araújo et al. (2009), the stability of the solution was
investigated by means of a Tikhonov regularization technique and
the results obtained for the inverse problem solution were quite
promising. The results showing a significant improvement on im-
age reconstructionwere obtained with an ART algorithm in a single
beam tomography. Nevertheless, a better understanding of the
noise level effect requires a regularization technique associated to
Morozov's principle. In this work, a further theoretical formulation
of the regularization is given and the solutions for the inverse
problem, using computational algorithms, are discussed.

2. Methodology

To reconstruct an image and produce a graphical representation
of the distribution of the process parameters, it is necessary to limit
the spatial resolution and define an attenuation function m. This is
an array of pixels, for which each linear attenuation coefficient is
assumed to be constant. The ray sum for each ray j is then expressed
by the following summation:

pj ¼
XN
i¼1

wjimi (1)

where wji is the contribution to ray sum j from pixel i, mi is the
attenuation coefficient of the pixel i and N is the total amount of
pixels. The terms wji constitute the entries of the weight matrix W.
Assuming that we have m measurements pj (j ¼ 1, … , m), wherem
is usually bigger than the number of pixels in m, we obtain the
following system of linear equations:

Wm ¼ p (2)

The solution of thematrix Equation (2) requires the inversion of the
weight matrix W to find m according to a given density vector p; it

constitutes the inverse problem in tomography. Since W usually is
not a square matrix, the solution of the least squares problem to
find the m vector will minimize the norm of the residuals via normal
equations. An ART-type algorithm (Algebraic Reconstruction
Technique) was developed in the Matlab environment and the so-
lution of the linear system of equations as it is given in Equation (2)
was investigated. The Matlab built-in functions include several
known matrix factorization algorithms. Its linear solvers can pro-
duce an m � n W matrix with either m < n, m ¼ n or m > n, ac-
cording to the available tomographic arrangement. For
underdetermined systems (m < n), nearly singular matrix and rank
deficient matrix can bring perturbations to the least squares and
even prevent it from reaching a solution. The investigation of such a
solution deals with the very nature of an inverse problem. If the
coefficient matrix of the linear system in Equation (2) is invertible
and well conditioned, then the vector of coefficients m can be ob-
tained from the vector of measured p values as:

m ¼ W�1p (3)

where W is a given mapping (operator) from a space U into a space
P; m2U is to be given from a p2P. Hadamard's well-posedness
conditions, Hadamard (1902) are as follows: a solution should
exist, should be unique and be continuously dependent on the
initial data. Applied to equation (3) Hadamard's conditions take the
form:

i) for any p2P, there exists m2U such that (1) holds, i. e.,
R(W) ¼ P where R(W) is the range of values of W (existence).

ii) The data p determines the solution m uniquely, i.e., there
exists an inverse operator W�1 (uniqueness).

iii) The solution m depends continuously on the data p, i.e., the
inverse operator W�1 is continuous (stability).

If Equation (3) satisfies these requirements, the problem is said
to be well-posed on the pair of topological spaces U, P. Otherwise,
the problem is ill-posed. In industrial gamma-ray tomography there
are serious restrictions on the amount of transmitting beams, due
to layout, security and equipment cost limits, causing the acquired
data to be much noisier than in the medical counterpart, which
calls for the linear system inversion to be done with a regulariza-
tion, as proposed in a well known paper by Azzi et al. (1991).

The problem of regularization, in general, is equivalent to the
Lagrange multiplier problem of determining l > 0 such that

�
WTW þ lI

�
x ¼ WTb (4)

and jjxjj ¼ a. This equation is precisely the normal equation
formulation for the ridge regression problem

min
x

��� Wffiffiffi
l

p
I

�
x�

�
b
0

���2
2 ¼ min

x
kWx� bk22 þ lkxk22 (5)

which was proposed first by Tikhonov (1963). The left side is
basically the stacking of the two terms on the right, while Equation
(4) can be seen as the evaluation of the Euclidean norm in Equation
(5) and the determination of the minimum through differentiation.
The idea behind this equation is the attempt to attack the numerical
instability (item iii earlier) byminimizing not only the residuals but
also the norm of the solution. In the general ridge regression
problem one has some criteria for selecting the ridge parameter l
and I matrix of additional information, e.g., kx(l)k2 ¼ a , for some
given a.
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