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a b s t r a c t

Some optimization problems in the field of nuclear engineering, as for example the incore nuclear fuel
management and a nuclear reactor core design, are highly multimodal, requiring techniques that over-
come local optima, exploring the search space and promoting the exploitation of its most promising
areas. The differential evolution algorithm (DE) relies mainly on the mechanism of mutation, where an
individual is perturbed using the weighted difference (with the so-called “scaling factor” F) between two
randomly chosen individuals. DE's canonical version employs a constant value of F. However, this
parameter should be variable in order to balance the exploration and exploitation of the search space. In
this work, we test some variable scaling factors from the literature and present the novel exponential
scaling factor. These methods are applied to two problems: the aforementioned core design and the
turbine balancing problem, which is an NP-hard (i.e. intrinsically harder than those that can be solved in
nondeterministic polynomial time) combinatorial optimization problem that can be used to assess the
potential of an algorithm to be applied to fuel management optimization. DE with variable scaling factors
perform well in both problems, showing potential to be used in other nuclear science and engineering
optimization problems.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Some optimization problems in the field of nuclear engineering
are highly multimodal, remaining a great challenge for most
methods. The most notorious problem is the incore fuel manage-
ment (Carter, 1997; Turinsky, 2010), which is a large search space
problem with � 1012 possible configurations and � 1010 local op-
tima (Galperin, 1995).

Another multimodal problem is a nuclear reactor core design
optimization introduced by Pereira et al. (1999), which has been
attacked by other researchers, as in Sacco et al. (2004) and
Domingos et al. (2006), for example. In this work, we address this
problem, and also a problem that belongs, as well as nuclear fuel
management, to the class of combinatorial optimization problems
(Papadimitriou and Steiglitz, 1998): the turbine balancing problem

(Mosevich, 1986). Therefore, optimization algorithms that are
successful in this problem are prone to performwell in the nuclear
problem. We must add that the turbine balancing problem is NP-
hard (Johnson and Garey, 1979; Atallah and Blanton, 2010),
which, according to Atallah and Blanton (2010) means

a complexity class of problems that are intrinsically harder than
those that can be solved by a Turing machine in nondeterministic
polynomial time. When a decision version of a combinatorial
optimization problem is proven to belong to the class of NP-
complete problems, which includes well-known problems such as
satisfiability, traveling salesman problem, etc., an optimization
version is NP-hard.

In these multimodal problems, the search space should be thor-
oughly explored and its most promising areas should be exploited, so
that the optimization algorithmdoes not converge to a local optimum.

The differential evolution algorithm (DE) (Storn and Price, 1997)
has been successfully applied in many fields (Yang et al., 2002;
Ilonen et al., 2003; Onwubolu and Davendra, 2006; Babu and
Munawar, 2007; Das et al., 2008; Noman and Iba, 2008;
Henderson et al., 2010; Sarkar et al., 2015; €Orkcü et al., 2015;
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Chen et al., 2015), including nuclear engineering (Sacco et al., 2009;
Bledsoe et al., 2011). Indeed, differential evolution outperformed
the more popular genetic algorithm and particle swarm optimiza-
tion in extensive experiments (Vesterstrom and Thomsen, 2004).
However, the canonical DE tends to converge prematurely to local
optima (Das and Suganthan, 2011). This tendency is a burden in
many real-world problems, including the nuclear-engineering ones
mentioned above. To overcome this situation, researchers have
proposed niching methods (Qu and Suganthan, 2010; Qu et al.,
2012; Sacco et al., 2014), new mutation schemes (Zhang and
Sanderson, 2009; Sacco et al., 2014b), parallel implementations
(Tasoulis et al., 2004; Weber et al., 2011), the opposition-based
learning paradigm (Rahnamayan et al., 2008), and variable scaling
factors (Ali and T€orn, 2004; Kaelo and Ali, 2006; Draa et al., 2015).

In this work, we test the application of variable scaling factors in
order to balance exploration and exploitation in DE and try to avoid
getting trapped in local optima. As the reader will see in Section 3,
DE relies mainly on the mechanism of mutation, where an indi-
vidual is perturbed using the weighted difference (with the so-
called “scaling factor” F) between two randomly chosen in-
dividuals. DE's canonical version employs a constant value of F.
However, this parameter should be variable in order to balance the
exploration and exploitation of the search space (Draa et al., 2015).
We use three variable scaling factors from the literature and a novel
scheme, the exponential scaling factor.

The remainder of the paper is described as follows. The opti-
mization problems are described in Section 2. The description of DE
is presented in Section 3. The scaling factors tested here are
explained in Section 4, including the new one. The computational
experiments and their discussions are in Section 5. Finally, the
conclusions are made in Section 6.

2. The optimization problems

2.1. The nuclear reactor core design problem

Let us describe the optimization problem (for a more detailed
exposition, see Pereira et al. (1990)). Consider a cylindrical three-
enrichment-zone reference reactor, as seen in Fig. 1a, with
R1 ¼ 86 cm, R2 ¼ 38 cm, R3 ¼ 18 cm, and h ¼ 63 cm. This reactor's
typical cell is composed by moderator (light water), cladding and
fuel (Fig. 1b). The design parameters that may be varied in the
optimization process, as well as their variation ranges, are shown in
Table 1. The materials are represented by discrete variables.

The objective of the optimization problem is to minimize the
average flux or power peaking factor, fp, of the proposed reactor,
allowing the reactor to be sub-critical or super critical
ðkeff ¼ 1:0±1%Þ, for a given average flux f0. Let
D ¼ fRf ;Dc;Re; E1; E2; E3g be the vector of design variables. Then,
the optimization problem can be written as follows:

Minimize fpðDÞ s.t.

fðDÞ ¼ f0; (1)

0:99 � keff ðDÞ � 1:01; (2)

dkeff
dVm

>0; (3)

Dl
i � Di � Du

i ; i ¼ 1;2;…;6; (4)

Mf ¼ fU�Metal or UO2g; (5)

Mc ¼ fZircaloy� 2; Al or SS� 304g; (6)

where Vm is the moderator volume, and the superscripts l and u
indicate respectively the lower and upper bounds (of the feasible
range) for each design variable.

The HAMMER system (Suich and Honeck,1967) was used for cell
and diffusion equations calculations. It performs a multigroup
calculation of the thermal and epithermal flux distribution from the
integral transport theory in a unit cell of the lattice,

fðrÞ ¼
Z

V

e�
P

tjr�r0j

4p
���r � r0

���2 Sðr0Þd3r0: (7)

The integral transport equation for scalar flux fð r!Þ is solved for
all sub-regions of the unit cell, being the neutron source SðrÞ
isotropic into the energy group under consideration. The transfer
kernel in Eq. (7) is related to the collision probabilities for a flat
isotropic source in the initial region. The solution is initially per-
formed for a unit cell in an infinite lattice.

The integral transport calculation is followed by a multigroup
Fourier transfer leakage spectrum theory in order to include the
leakage effects in the previous calculation and to proceed with the
multigroup flux-volume weighting.

Fig. 1. (a) The nuclear reactor and (b) its typical cell.

Table 1
Range of parameters.

Parameter Symbol Range

Fuel Radius (cm) Rf 0.508 to 1.270
Cladding Thickness (cm) Dc 0.025 to 0.254
Moderator Thickness (cm) Re 0.025 to 0.762
Enrichment of Zone 1 (%) E1 2.0 to 5.0
Enrichment of Zone 2 (%) E2 2.0 to 5.0
Enrichment of Zone 3 (%) E3 2.0 to 5.0
Fuel Material Mf {U-Metal or UO2}
Cladding Material Mc {Zircaloy-2, Aluminum or Stainless-304}
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