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a b s t r a c t

The point kinetics equations for reactor dynamic systems are normally described and treated for one-
energy group, which modeled as stiff coupled differential equations, and their solution by the conven-
tional explicit methods will give a stable consistent result only for very small time steps. A novel
analytical formulation is constructed and converged to high accuracy from the merger of the piecewise
constant functions over a partition in time into the fundamental matrix for the two-energy group of the
point kinetics equations. The resulting system of stiff linear and/or nonlinear differential equations for an
arbitrary number of delayed neutrons is solved exactly over each time step. Through analytical inversion
technique of the fundamental matrix and the stability of the method, we demonstrate its high accuracy
for a variety of imposed reactivity insertions found in the literature for three dimensional homogeneous
reactors. From knowledge of how the error term behaves the computational results indicate that the
method is efficient and accurate for multi-dimensional homogeneous reactors.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The safety of nuclear power reactors has become an urgent
requisite for all world countries, which implies a physically
powerful effort to arrive to an efficient and economic worldwide
mathematical development codes for nuclear criticality. According
to the fact that, there are a large number of fission product isotopes
that decay by neutron emission and, thus, are members of the
delayed precursor family. For the purposes of modeling their effect
on neutron kinetics, it is sufficient to group them into six groups
according to their half-life. A fast and an accurate algorithm for
modeling and solving the time dependant neutron diffusion
equations for reactor kinetics with six groups of delayed neutrons is
developed in this work to improve the safety of nuclear power
reactors. The algorithm is derived by means of analytical and nu-
merical mathematical tools. This solution describes and predicts
the temporal evolution of the neutron flux and precursor concen-
trations of delayed neutrons for the multi-energy point kinetics
reactor systems.

Several estimated solutions of the neutron dynamics in the
reactor cores have been analyzed and reviewed by many workers
(e.g. Dahmani et al., 2001; Kobayashi, 2005; Gupta et al., 2005;
Grossman and Hennart, 2007; Ginestar et al., 2002; Mir�o et al.,
2002; Gonz�alez-Pintor et al., 2010; Tamitani et al., 2003; Shimjith
et al., 2010; Aboanber and Hamada, 2008, 2009; Quintero-Leyva,
2010). General class of alternating-direction semi-implicit
methods, numerical code (3DKIN), was presented by Ferguson and
Hansen (1973) for solving the space-dependent reactor kinetics
equations in three dimensions. Adaptive matrix formation (AMF)
method was developed by Aboanber and Nahla (2007) to solve the
transient multi-groups neutron diffusion and delayed precursor
equations in two- and three-dimensional geometry. This method
offers the flexibility of using small time steps between flux shape
calculations to achieve a specified accuracy and capability, without
encountering numerical problems.

In the present work we elaborate a methodology to solve, and
adopted analytically by the fundamental matrix and piecewise
constant functions over a partition in time, the kinetic diffusion
equation of two energy groups with six groups of delayed neutrons.
In 1988 Blanchon et al. introduced a numerical method for simu-
lating the neutron kinetics in a reactor with two energy groups and
six precursor groups. The stability has been evaluated and the
iterative algorithm was used for propose of the solution of a large
linear system. Lemos et al. (2008) solved the diffusion equation of
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neutrons in slab geometry for a model with two energy groups by
the technique of Laplace transform. The problem in Cartesian ge-
ometry was solved successfully by Ceolin et al. (2010) and was
extended for a different geometry. Recently, Fernandes et al. (2011)
introduced an analytical solution for the two-group kinetic neutron
diffusion equations in cylindrical geometry by the Hankel trans-
form. Furthermore in another work, Fernandes et al. discussed, in
(2013), the kinetic neutron diffusion equation in homogeneous
cylinder geometry. They construct solutions unaffected by a nu-
merical artifact, known as the stiffness of the equation system, for
two energy groups, one and six precursor concentrations,
respectively.

In this work we focus on the derivation of an analytical
formulation for the system of differential equations representing
the neutron flux for fast and thermal energy groups and the con-
tributions from the precursors. The principal idea is to solve the
point kinetics diffusion equation of neutrons, for the model of two
energy groups using the fundamental matrix method whereas the
stiffness of the system is treated by means of the piecewise con-
stant functions over a partition in time. To this end, the eigenvalues
of the coefficient matrix are calculated numerically using FORTRAN
computer code based on Laguerre's method. Also, The eigenvectors
of the coefficient matrix and the inverse of the fundamental matrix
are calculated analytically. Finally, a generalized system involving
two groups of equations, two for flux, fast and thermal, and six of
kinetic origin, representing six different groups of delayed neutrons
is obtained. Furthermore, the stability of the developed method-

ology is discussed and in view of the promising results in this work
the results are compared well with the conventional methods.

2. Mathematical model

The deterministic time-dependent equations satisfied by the
neutron flux and the delayed neutron precursors can be described
by the two energy groups neutron diffusion equations with I-
groups of delayed neutron precursors (Hetrick, 1993; Glasstone and
Sesonske, 1994; Stacey, 2001; Aboanber and Nahla, 2006, 2007):
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This model governing the dynamic groups diffusion neutron
flux and delayed precursor concentration behavior, where F1(r,t)
and F2(r,t) are fast and thermal neutron flux, Ci(r,t) is the delayed

precursor concentration, D1 and D2 are fast and thermal diffusion
coefficients, Sa1 and Sa2 are fast and thermal absorption cross
sections, Sf1 and Sf2 are fast and thermal fission cross sections, Ss12
is the scattering cross section from fast to thermal neutron, n is the
neutron fission, v1 and v2 are fast and thermal neutron speed, li is
the decay constant of i-group of delayed neutrons and bi is the
fraction of i-group delayed neutrons.

The differential equations representing the neutron flux for two
energy groups and precursor concentrations of delayed neutrons
can be obtained from Equations (1)e(3) by separation of variables.
These separated differential equations can then be used to solve the
kinetics problem in general. Let us assume that:
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where, n1(t) and n2(t) are the fast and thermal neutron density, Ci(t)
is the precursor concentration density of delayed neutrons, and
J
_ðrÞ is the fundamental function which can be determined from
the standard diffusion equation describing the flux shape in the
reactor for both groups:
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where, B2 is the material buckling given by:

Substituting Equations (4) and (5) into Equations (1)e(3) yields
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Let us consider the following kinetic parameters, l1 ¼ 1=v1vSf1
and l2 ¼ 1=v2vSf2 are fast and thermal generation time between
birth of neutron and subsequent absorption inducing fission,
L21 ¼ D1=Sa1 and L22 ¼ D2=Sa2 are fast and thermal diffusion length,
k1 ¼ vSf1=Sa1 ½1þ L21B

2� and k2 ¼ vSf2=Sa2 ½1þ L22B
2� are fast and

thermal multiplication factor, r1 ¼ k1 � 1/k1 and r2 ¼ k2 � 1/k2 are
fast and thermal reactivities and k ¼ v1Ss12 .

Upon substituting into Equations (7)e(9) the following system
is obtained:
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