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a b s t r a c t

An adjoint-based a posteriori error measure is developed and applied to the Keff eigenvalue in particle
transport problems using the diffusion approximation and full transport solutions. This demonstrates
application of an eigenvalue error recovery scheme that can be applied to both elliptic and hyperbolic
operators. The Keff eigenvalue is first obtained via a conventional inverse power iteration on the fission
source, from the forward system of equations using a simple linear finite element type. The solution
procedure is then repeated using the adjoint equations. The eigenvector solution to the adjoint system is
enriched in a post-processor step, and convolved with the residual of the forward equations. This pro-
duces a computable approximation to the error in the eigenvalue. This approximation to the error is then
subtracted from the eigenvalue producing a better estimate. It is shown how this approach can accelerate
the mesh convergence of the eigenvalue in both smooth, diffusive problems using an elliptic operator
and also in non-smooth transport problems in which the operator is of hyperbolic form. In the elliptic
case, the diffusion equation is discretised with continuous finite elements. In the hyperbolic case, the
Boltzmann Transport Equation is discretised with discontinuous Galerkin weighted finite elements. The
approach to recovering the error in the Keff eigenvalue is common to both cases.

Crown Copyright � 2014 Published by Elsevier Ltd. All rights reserved.

1. Introduction

An a posteriori scheme for improving the accuracy and reducing
the error in eigenvalue calculations is presented, for neutron
diffusion and transport applications (Lewis and Miller, 1993). Using
a first order Taylor series expansion of both the eigenvalue solution
and the residual of the governing equation, an approximation to the
error in the eigenvalue is derived. This is done using a convolution
of the equation residual and adjoint solution, which is calculated
in-linewith the primal solution. A defect iteration on the solution is
then performed in which the approximation to the error is used to
apply a correction to the eigenvalue. The method is shown to
dramatically improve convergence of the eigenvalue. The equation
for the eigenvalue is shown to simplify when certain normal-
isations are applied to the eigenvector. Two such normalisations are
considered; the first of these is a fission-source type of normal-
isation and the second is an eigenvector normalisation. Results are

demonstrated on a number of demanding neutron diffusion and
neutron transport problems. The diffusion problems are discretised
using continuous Galerkin weighted finite elements. The neutron
transport problems are discretised using discontinuous Galerkin
(DG) weighted finite elements. This shows the correction scheme
may be applied to both elliptic and hyperbolic problems and within
different discretisation frameworks. This is not limited to spatial
corrections and may be used throughout the phase space of the
discrete equation. The a posteriori approach to error estimation not
only improves the fidelity of a calculation, it can assess the reli-
ability of numerical schemes (Houston et al., 2000, 2007a, 2007b;
Georgoulis et al., 2011) and can be used to guide mesh adaption
algorithms (Cliffe et al., 2010a, 2010b, 2011; Zhu et al., 2011) or to
automate mesh generation (Georgoulis et al., 2009). This has been
demonstrated for both bulk functionals (Baker, 2011) and eigen-
value problems (Lathowers, 2011). The current work uses an a
posteriori approach to recovering errors in the Keff eigenvalue.

Eigenvalue problems arise in many areas of science, mathe-
matics and engineering. They characterise a diverse range of sys-
tems that are of interest such as glacier movements in geology, to
lift and drag past obstructions to flow in aircraft and ship design. In
mathematics they describe the orthogonal properties of a matrix
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and in reactor physics the distribution of neutrons in a lattice,
allowing criticality of a loaded core to be assessed. Accurate
determination of the largest (or principal) eigenvalue is clearly
important in awide range of applications. The need to improve it as
an approximation is apparent in many areas of science and math-
ematics, as discussed in Merton (2011). This is because computa-
tional procedures for obtaining the eigenvalue are typically very
intensive numerically, notably so in criticality problems where a
large number of non-linear iterations are required to accurately

characterise the system. Coarsened computational meshes make
calculations of the eigenvalue numerically feasible, however they
are unable to capture or contain enough information about the
problem to achieve solutions of acceptable accuracy. Finer meshes
that offer reasonable accuracy are in many cases unfeasible where
highly iterative solution schemes are employed, such as source
iteration schemes used to obtain eigenvalues in neutron transport
applications. This has motivated the development of methods that
improve the numerical solution on meshes that would otherwise
not offer sufficient accuracy. An example of this type of approach is
the a posteriori error measure (Elman et al., 2008), in which the
solution itself is used in some way to obtain a defect estimate
(Ainsworth and Oden, 1997). Another popular approach is to use
the adjoint problem to obtain an approximation to the error, and
subsequently remove this approximation from the solution
obtaining improved functional estimates (Venditti and Darfomal,
2000; Pierce and Giles, 2004; Giles et al., 2004). Alternatively,
one might use it as a metric to guide a grid adaption step. This has
been shown to be successful in Venditti and Darfomal (2002, 2003).
However, the error across the whole phase space of the discrete
equation needs to be understood when any type of adaption is
applied to the grid, as it is not always clear in which order variables
should be refined (or de-refined). Adjoint solutions are useful for
deriving errors because they provide information on the first-order
sensitivities of a functional (or eigenvalue) to the forward solution
of a partial differential equation. The sensitivity information pro-
vided depends on how the source term of the adjoint equation is
defined; for example, if one seeks to obtain eigenvalue sensitivity to
the forward solution, then the eigenvalue must be differentiated
with respect to the eigenvector. The adjoint solution will then
describe how a small perturbation in the forward solution effects
the eigenvalue. Since the computational solution may be regarded
as a perturbation from the true solution to the underlying problem,
one can use the adjoint equation to derive improvements to the
eigenvalue. The approach developed in the present work is an
adjoint-based a posteriori scheme that derives an approximation to
the error in the eigenvalue. This is a similar strategy to that
developed for bulk functionals in Giles et al. (2004) and to that
developed for anisotropic grid optimisation in viscous flow
(Venditti and Darfomal, 2000).

2. Eigenvalue problem

The presentwork derives a correction to the eigenvalue problem
arising in transport and diffusion problems. The correction is based
on the forward and adjoint system of equations. This section in-
troduces the transport equation, the diffusion equation and the

space-angle discretisation used in the presentwork. The eigenvalue
and its derivative are then defined.

2.1. Space-angle discretisation

The first-order time-independent transport equation, in a
domain that contains a fission source and no external or imposed
source, may be written in two-dimensional Cartesian geometry as:

inwhichU¼ (Ux,Uy)T is the direction of particle travel expressed in
terms of the Cartesian components Ux,Uy, j(r,U,E) is the angular
flux at position r, angle U and energy E. l is the leading eigenvalue
that characterises the criticality of the system. The fission spectrum
is given by c(E) which describes the probability that a fission
neutron will have an energy within dE about E, and the mean
number of neutron per fission is given by n(E). The quantity sf(r,E) is
the fission cross-section at position r for a neutron with energy E.
This is assumed to be (on average) isotropic. It therefore lacks
dimension in angle. st(r,E) is the total cross-section at position r for
energy E. ssðr;U0/U; E0 /EÞ is the scattering cross-section at
position r describing the contribution to energy E and angleU from
energy E0 and angle U0. In the present work, energy dependence is
omitted from consideration to be left as a future topic. Therefore, in
each test problem used in the present paper, neutrons are assumed
to travel at a constant energy. Eq. (1) may then be written in an
angular discrete form, in terms of the M angular moments of the
solution:

a$VJðrÞ þHðrÞJðrÞ � lCðrÞJðrÞ ¼ 0; (2)

in which a ¼ (ax,ay)T is an M�M matrix containing the spatially
invariant Jacobian of the direction of particle travel U. The deriva-
tion of a is described elsewhere, for different choices of angular
approximation (Lewis and Miller, 1993; Miller et al., 1973; Wareing
et al., 2001; Merton, 2011). The number of moments M is simply
the number of angular unknowns in the angular discrete equation.
M depends on the choice of basis function in direction of particle
travel, and on the order of approximation made. For example, for
discrete ordinates there are n(nþ2) unknowns on the sphere where
n is the Sn order. Typically in two dimensional problems, one
hemisphere is solved and therefore one would use
M ¼ nðnþ 2Þ=2. In the case of spherical harmonics, there are
(nþ1)2 moments on the sphere, where n is the order of the Pn
expansion. In two dimensions, one solves a subset of these inwhich

there are (nþ1)(nþ2)/2 moments. Thus M ¼ ðnþ1Þðnþ2Þ
2 for typical

two-dimensional Pn problems. H(r) is an M�M matrix containing
the angular moments of the scattering-removal data, at position r.
The M�M matrix C(r) contains the fission data, multiplied by the
angular weights, at position r. This generates an isotropic source
term. The quantity J(r) is a vector of length M containing the
angular moments of the solution at position r. The vector r is the
space that remains to be discretised. For example, r ¼ (x,y)T in
which x,y are the Cartesian coordinates in the spatial continuum.
The vector 0 is of length M and contains zeroes. The residual ℛ ¼
ℛðJÞ is therefore a vector of length M at position r and may be
written:

U$Vjðr;U; EÞ þ stðrÞjðr;U; EÞ ¼ lcðEÞ
Z
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