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a b s t r a c t

In this paper a new method based on the empirical mode decomposition (EMD) to estimate a parameter
associated with instability in boiling water reactors (BWR), is explored. This instability parameter is not
exactly the classical Decay Ratio (DR), but it will be associated with this. The proposed method allows to
decompose the analyzed signal in different levels or intrinsic mode functions (IMF). One or more of these
different modes can be associated to the instability problem in BWRs. By tracking the instantaneous
frequency (obtained through the HilberteHuang transform) and the autocorrelation function of the IMF
associated to the instability of the BWR, the estimation of the proposed instability parameter can be
achieved. The methodology was validated with two events reported in the Forsmark stability benchmark.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

In the last few decades, research has been devoted to the study
of power oscillations and the mechanisms that generate them (e.g.
Saha and Zuber, 1978; Peng et al., 1984; Lahey and Podoswski, 1989;
March-Leuba, 1990; March-Leuba and Blakeman, 1991; March-
Leuba and Rey, 1993; Cai et al., 2009). Several approaches have
been taken to address the stability of BWRs, March-Leuba (1986)
pioneered the study of reduced-order models for coupled
thermal-neutron dynamics, followed by Turso et al. (1997) and
Muñoz-Cobo et al. (2004), among others. Some of thoseworkswere
developed to gain insights about the BWRs dynamics, while others
were focused on a more complete description of the heat transfer
process (e.g. Uehiro et al., 1996; Guido et al., 1997; Podowski and
Pinheiro, 1997). The models presented in the mentioned works
were able to describe, in a qualitative way, low-frequency oscilla-
tions and even instabilities, but neither sustained oscillations of
relatively high frequency nor highly non-stationary behavior could
be described accurately by such models (Verdu et al., 2001). When
the signal is non-stationary Navarro-Esbri et al. (2003) studied the
time dependence of the natural frequency using two different
tools: the Short-Time Fourier Transform (STFT) and the Time
Dependent Power Spectral Density (TDPSD). Both techniques split

the signal in short segments with a high degree of overlapping.
Their results show that the STFT provides better accuracy than the
TDPSD despite the lower sensitivity to noisy neutronic signals of
the TDPSD method. It is worth mentioning that an autoregressive
method (AR) was used by those authors to estimate the Decay Ratio
(DR). However one of the most important disadvantages in the
methods above discussed is the large number of floating operations
(multiplications and additions) needs to be implemented.

Recently, the wavelet theory has been used to explore new al-
ternatives for transient instability analysis (Espinosa-Paredes et al.,
2005, 2007). It has been shown that stability depends on several
variables such as control rod patterns, void fraction, burnup, inlet
mass flow, among others. A key point is that in general, BWR signals
are non-stationary, therefore traditional methods such as the
Fourier transform, might lead to biased stability parameters. Sunde
and Pázsit (2007) proposed an original work using the wavelet
transform in combination with the autocorrelation function (ACF)
to estimate the DR. Prieto-Guerrero and Espinosa-Paredes (2008)
propose the application of wavelet ridges to track the instanta-
neous frequency and determine the DR. Also recently (Torres-
Fernández et al., 2010a,b, 2012), the idea of an instantaneous DR
was introduced.

In this work, a new method based on empirical mode decom-
position (EMD) to estimate a parameter associated to instability in
BWRs is introduced. This instability parameter is not exactly the
classical DR, but it will be associated with this. The methodology is
based on the implementation of the empirical mode decomposition
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algorithm that allows the decomposition of the analyzed signal in
different levels or intrinsic mode functions (IMF). One or more of
these different modes can be associated to the instability problem
in BWRs. Based on the HilberteHuang transform it is possible to get
the instantaneous frequency (IF) associated to each IMF. By tracking
this instantaneous frequency and the autocorrelation function of
the IMF associated to the instability of the BWR, the estimation of
the proposed instability parameter can be achieved, this is themain
contribution in this work.

The effectiveness of EMD has been demonstrated before for
processing biomedical signals (Wu and Huang, 2009), audio signals
(Khaldi et al., 2009), mechanical signals (Peng et al., 2005), gravi-
tational waves (Lin et al., 2009), geophysical signals (Huang and
Wu, 2008), among others. In the nuclear signals domain, there
had been a previous research effort on how to estimate the DR of
BWRs using EMD (Montesinos et al., 2003). It is worth mentioning
the differences between previous research and the present one. The
research in of Montesinos et al. (2003) deals with estimating the DR
of BWRs by also using EMD and IMF which, conceptually speaking,
have no significantly difference from the method employed in the
present paper asmentioned before. However, the proposedmethod
is different in two important points: first, we consider the signal
(from BWRs) in short segments of 15 s, tracking the estimated
instantaneous frequency and second, the IMF associated to detec-
ted IF is processed in order to get a parameter similar to the DR
along time. Montesinos et al. (2003) considers the complete signal
of the IMF in order to estimate the impulse response of the system
based on an autoregressive (AR) model. The classical global DR is
then obtained based on this impulse response. In counterpart, in
our method the proposed Decay Ratio is calculated directly on the
autocorrelation function of the IMF associated to the instability
phenomenon.

To validate our method, simulated and real neutronic signals
were used. The methodology was validated with two cases (4 and
6) reported in the Forsmark stability benchmark (Verdu et al.,
2001).

The rest of this paper is organized as follows: in Section 2 the
basic background to understand our methodology is presented. In
Section 3, the methodology to estimate the instantaneous fre-
quency and the proposed DR is discussed, additionally a simulated
case is proposed to validate our hypothesis. Then in Section 4, the
validation of the methodology presented in this paper is performed
doing experiments with real signals taken from the Forsmark sta-
bility benchmark. Last, in Section 5, our conclusions are presented.

2. Preliminaries

2.1. Empirical mode decomposition and intrinsic mode functions

The empirical mode decomposition (EMD) algorithm was pro-
posed in Huang et al. (1998) in order to analyze non-stationary
signals from non-linear processes. EMD extracts intrinsic oscilla-
tory modes defined by the time scales of oscillation. The compo-
nents that result from the EMD algorithm are called Intrinsic Mode
Functions (IMFs). These obtained IMFs result in a composed AMe

FM (Amplitude ModulationeFrequency Modulation) signal.

2.1.1. Sifting process
The fundamental step of the empirical mode decomposition

(EMD) is the next iterative sifting process:

1. Consider a signal x(t) with M maxima and L minima. The sifting
process startswith identifying the extremaof the signal, x(t), given
by the sets E1max ¼ fxmaxðt1Þ; xmaxðt2Þ; xmaxðt3Þ;.; xmaxðtMÞg,

and E1min ¼ fxminðt1Þ; xminðt2Þ; xminðt3Þ;.; xminðtLÞg. We also set
x(t) ¼ s0(t).

2. The set points of E1max are interpolated to form the upper en-
velope of the signal, bxUðtÞ. Similarly, the set points of E1min are
interpolated to form the minimum envelope, bxLðtÞ.

3. The average envelope bxAðtÞ ¼ bxUðtÞ þ bxUðtÞ=2, is computed.
4. This average envelope is subtracted from the original signal x(t)

resulting in a residue signal: rkðtÞ ¼ xðtÞ � bxAðtÞ with k indi-
cating the iteration, and k¼ 1 for the first iteration. The iteration
on k is continued until the scalar product hrk(t), rk(t)i ¼ 0 and the
number of extreme (maxima and minima) and the number of
zero-crossings of rk(t) may differ by no more than one. This
sifting process produces the first IMF given by IMFjðtÞ ¼ rkj ðtÞ
with j ¼ 1 obtained at the kth iteration.

5. Following this, the function with s1(t) ¼ s0(t) � IMF1(t) is created,
and the sifting process is repeated (steps 1e4), resulting in the
second IMF, i.e. IMF2(t). Considering this procedure, the other
IMFs are generated until the residue rðtÞ ¼ xðtÞ �PN

j¼1 IMFjðtÞ
is accomplished. The functions IMFj(t), j¼ 1,2,.,N decompose x(t)
and are nearly orthogonal to one another.

The schematic diagram of the EMD algorithm is given in Fig. 1.
The sifting process essentially extracts scales of the signal. Since
each IMF has only one extreme between any two successive zero
crossings, the frequency of the signal can be directly inferred by
measuring the distribution of the zero crossings of the signal.
Further, the IMF has symmetric envelopes and a zero mean value.
Due to these characteristics, the IMF is referred to as being
monocomponent.

Since the residue is computed by successively subtracting the
sifted functions from the original signal, the EMD algorithm is data
driven and adaptive, i.e. the basis functions are derived from the
signal itself in contrast to the traditional methods where the basis
functions are fixed. Furthermore, interpolation is an inexact

Fig. 1. Flowchart of the EMD method.

A. Prieto-Guerrero, G. Espinosa-Paredes / Progress in Nuclear Energy 71 (2014) 122e133 123



Download English Version:

https://daneshyari.com/en/article/1740735

Download Persian Version:

https://daneshyari.com/article/1740735

Daneshyari.com

https://daneshyari.com/en/article/1740735
https://daneshyari.com/article/1740735
https://daneshyari.com

