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a b s t r a c t

Some optimization problems in the field of nuclear engineering, as for example incore nuclear fuel
management and a nuclear reactor core design, are highly multimodal, requiring techniques that over-
come local optima, which can be done using niching methods. In order to do so, we present a new
niching method based on the clearing paradigm, Topographical Clearing, which employs a topographical
heuristic introduced in the early nineties, as part of a global optimization method. This niching method is
applied to differential evolution, but it can be used in other evolutionary or swarm-based methods, such
as the genetic algorithm and particle swarm optimization. The new algorithm, called TopoClearing-DE, is
favorably compared against the canonical version of differential evolution in two test problems: the
aforementioned core design and the turbine balancing problem, which is an NP-hard combinatorial
optimization problem that can be used to assess the potential of an algorithm to be applied to fuel
management optimization. As the problems attacked are quite challenging, the results show that
Topographical Clearing can be applied to populational optimization methods in order to solve nuclear
science and engineering problems.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Some optimization problems in the field of nuclear engineering
are highly multimodal, remaining a great challenge for most
methods. The most notorious problem is the incore fuel manage-
ment (Carter, 1997; Turinsky, 2010), which is a large search space
problem with w1012 possible configurations and w1010 local op-
tima (Galperin, 1995).

Another multimodal problem is a nuclear reactor core design
optimization introduced by Pereira et al. (1999), which has been
attacked by other researchers (Sacco et al., 2004; Domingos et al.,
2006; for example). In this work, we address the latter problem,
and also an NP-hard (Garey and Johnson, 1979) problem that be-
longs, as well as nuclear fuel management, to the class of combi-
natorial optimization problems (Papadimitriou and Steiglitz, 1998):
the turbine balancing problem (Mosevich, 1986). Therefore, opti-
mization algorithms that are successful in this problem are prone to
perform well in the nuclear problem.

In these multimodal problems, the search space should be
thoroughly explored so that the optimization algorithm does not
converge to a local optimum. To overcome this difficulty, many
solutions have been proposed: a parallel genetic algorithm (Pereira
and Lapa, 2003), a niching method (Mahfoud, 1995) applied to
genetic algorithms (Sacco et al., 2004), a hybrid algorithm that al-
ternates exploration and exploitation of the search space (Sacco
et al., 2008), and a new mutation scheme (Sacco and Henderson,
2014) applied to differential evolution (Storn and Price, 1997).

Niching methods are techniques designed to maintain popula-
tional diversity in evolutionary or swarm-based methods, so
that multiple optima are determined in multimodal problems.
These optima may consist in more than one global optimum and
some local minima, or in a single global optimum and many local
minima. Most niching methods are based on one of the following
schemes:

1. Fitness sharing (Goldberg and Richardson, 1987), which mod-
ifies the search landscape by reducing the payoff in densely
populated regions (Sareni and Krähenbühl, 1998).

2. Crowding (De Jong, 1975), where a new individual replaces its
most similar element in the population.

3. Clearing (Pétrowski, 1996), where the best members of the
population, the so-called dominants, receive the entire payoff.
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The three main niching methods have been applied to the dif-
ferential evolution algorithm, which we use in this work. See, for
example, Thomsen (2004), Yang et al. (2008), and Qu et al. (2012).
For a brief survey, see Das and Suganthan (2011). For a more
detailed exposition, the reader should refer to Rönkkönen (2009).

Sareni and Krähenbühl (1998) tested these three niching
schemes applied to the genetic algorithm, concluding that clearing
is the best, provided that the niching radius s that delimits each
dominant’s territory is correctly estimated. This is the drawback of
this method, especially in real-world problems, where the search
space is generally unknown beforehand.

In order to overcome this limitation, Sacco et al. (2004) pro-
posed a variant of clearing where the individuals are clustered
using Fuzzy Clustering Means (FCM, Bezdek, 1981) and each cluster
has a dominant individual. However, FCM requires the number of
clusters as input and is rather complicated.

With the same motivation, Qu et al. (2012) proposed an
ensemble of clearing differential evolution algorithms, where the
initial population is divided into three equal subpopulations
P1; P2; and P3; which receive radii sP1 ¼ 0:005*SR; sP2 ¼ 0:01*SR;
and sP3 ¼ 0:05*SR; where SR is the problem’s search range. These
subpopulations exchange information during the selection phase.
This scheme increases clearing’s efficiency, but is still dependent of
s.

In this paper, we propose a method based on the clearing
paradigm which is simpler than the schemes introduced by Sacco
et al. (2004) and Qu et al. (2012). It uses a clustering heuristic
based on the topographical information on the objective function,
which was part of an optimization algorithm proposed by Törn and
Viitanen (1992), the Topographical Algorithm (TA). Recently, Sacco
and Henderson (2014) used this heuristic in a new mutation
operator applied to DE. In this work, we employ the topographical
heuristic with the purpose of determining the dominant individual
in a neighborhood. Originally, Törn and Viitanen (1992) used this
mechanism to determine minima from a set of sampled points, so
that they were initial solutions for a local optimization algorithm.
We apply this clearing variant, called topographical clearing, to
differential evolution, which outperformed the more popular ge-
netic algorithm and particle swarm optimization in extensive ex-
periments (Vesterstrøm and Thomsen, 2004). However, this
method can be applied to any evolutionary or swarm-based
technique.

The remainder of the paper is described as follows. The opti-
mization problems are described in Section 2. The description of DE
is presented in Section 3. The new niching method is introduced in
Section 4, as well as its application to DE. The computational ex-
periments and their discussions are in Section 5. Finally, the con-
clusions are made in Section 6.

2. The optimization problems

2.1. The nuclear reactor core design problem

Let us describe the optimization problem (for a more detailed
exposition, see Pereira et al., 1999): consider a cylindrical 3-
enrichment-zone reference reactor, with a typical cell composed
by moderator (light water), cladding and fuel. Fig. 1 illustrates such
reactor. The design parameters that may be varied in the optimi-
zation process, as well as their variation ranges, are shown in
Table 1. The materials are represented by discrete variables.

The objective of the optimization problem is to minimize the
average flux or power peaking factor, fp, of the proposed reactor,
allowing the reactor to be sub-critical or super critical
(keff ¼ 1.0 � 1%), for a given average flux f0. Let X¼ {Rf, Dc, Re, E1, E2,

E3,Mf,Mc} be the vector of design variables. Then, the optimization
problem may be written as

Minimize
fp (X)
Subject to:

fðXÞ ¼ f0; (1)

0:99 ¼ keff ðXÞ ¼ 1:01; (2)

dkeff
dVm

> 0; (3)

Xl
i � Xi � Xu

i ;1;2.;6 (4)

Mf ¼ fUO2 or U�metalg; (5)

Mc ¼ fZircaloy� 2; Aluminium or Stainless Steel� 304g;
(6)

where Vm is the moderator volume, and the superscripts l and u
indicate respectively the lower and upper bounds (of the feasible
range) for each design variable.

The HAMMER system (Suich and Honeck,1967) was used for cell
and diffusion equations calculations. It performs a multigroup
calculation of the thermal and epithermal flux distribution from the
integral transport theory in a unit cell of the lattice (Duderstadt and
Hamilton, 1976),

fðrÞ ¼
Z

V

e�St jr�r0 j

4pjr� r0j2
$Sðr0Þ$d3r0: (7)

The integral transport equation for scalar flux 4(r), where r is
the position vector, is solved for all sub-regions of the unit cell,
being the neutron source S(r) isotropic into the energy group under
consideration. The transfer kernel in Equation (7) is related to the
collision probabilities for a flat isotropic source in the initial region.
The solution is initially performed for a unit cell in an infinite lat-
tice. The integral transport calculation is followed by a multigroup
Fourier transfer leakage spectrum theory in order to include the
leakage effects in the previous calculation and to proceed with the
multigroup flux-volume weighting.

Using the four group constants obtained from the mentioned
procedure, a one-dimensional multi-region reactor calculation is
performed. The diffusion equation (Duderstadt and Hamilton,1976)
is, then, solved to perform standard criticality calculation,

� V
/

DgðrÞV
/

fgðrÞþSt;gðrÞfgðrÞ ¼
X4
g0 ¼1

"
1
keff

cg0Sfg0 ðrÞ

þSsg0gðrÞ
#
fg0 ðrÞ;

(8)

where r is the position vector; Dg is the diffusion coefficient for
group g; 4g is the neutron flux for group g;

P
t,g is the total group

cross section for group g; keff is the effective multiplication factor;
cg0 is the group fission spectrum for group g0;

P
fg’ is the fission

group cross section for group g0;
P

sg0g is the scattering cross section
form group g’ to g, and fg0 is the neutron flux for group g’:

The flux 4g(r) is calculated assuming normalized source density.
Equation (8) is solved using the finite difference method and a
computational mesh with constant spacing in the spatial
coordinate.
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