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a b s t r a c t

Currently, BWR stability analysis is most often performed by the application of system codes which
provide the time evolution of the neutron flux or thermal power at a defined operational point (OP) after
imposing a system parameter perturbation. However, in general it is impossible to understand the real
stability state of the BWR at a specific OP by the application of system code analysis alone. Hence, we are
exploring methods developed in the nonlinear dynamics field in order to reveal the nature of the BWR
stability states when power oscillations are observed. A powerful method is bifurcation analysis. In order
to motivate this “nonlinear thinking” versus “linear thinking”, in this paper we will demonstrate some
examples of phenomena which can only be understood in nonlinear terms by application of bifurcation
theory and where linear interpretation leads to incorrect conclusions.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

In Boiling Water Reactor (BWR) stability analysis it is common
practice to measure or calculate the so-called Decay Ratio (DR) at
the intrinsic (or natural) frequency, NF, of the BWR as a reliably
measurable technical stability indicator. The DR, strictly speaking
the asymptotic DR1 (Hennig, 1999), is a reliable linear stability in-
dicator characterising the oscillatory stability behaviour of a linear
(or linearised) dynamical system. Furthermore, in the theory of
nonlinear dynamical systems, the theorem of Hartman and Grob-
man (Guggenheimer and Holmes, 1984) allows the application of
linear stability indicators to determine the stability properties of
hyperbolic fixed points (operational points, equilibrium points) of
nonlinear dynamical systems. In this case there are, beyond DR
estimation, many powerful methods to examine the system sta-
bility state, such as Nyquist plots, root locus criterion and others
(Hetrick, 1971).

Due to the nonlinearity of BWRdynamicswe are interested in the
nonlinear stability behaviour. The term stability analysis comprises
the examination of the stability of reactor states as equilibrium

points (fixed points) and periodic orbits (limit cycles), or states
where equilibriumpoints andperiodic orbits coexist. The application
of thebifurcation theorycouldbeveryhelpful in the stabilityanalysis
of nonlinear dynamical systems. This approach has been applied in
BWR reactor dynamics since the mid 1980s (van Bragt, 1998; Tsuji
et al., 1993; Uddin, 1981; Munoz-Cobo and Verdu, 1991). Some of
the authors combined bifurcation codes with simplified BWR
models, so-called Reduced Order Models (ROMs). The first system-
atic bifurcation analysis was published by Munoz-Cobo and Verdu
(1991). They used a very simple BWR model published in March-
Leuba et al. (1986), but the analytical approach in Munoz-Cobo and
Verdu (1991) already demonstrates the essence of the bifurcation
analysis of dynamical systems with dimensions larger than 2 (e.g.
Hopf bifurcations, centre manifold reduction, transformation to
Poincare normal form). In (van Bragt, 1998; Uddin, 1981; Zhou and
Uddin, 2002; Dokhane, 2004; Lange, 2009), advanced ROMs were
coupledwith the bifurcation code BIFDD developed by Hassard et al.
(1981). However, semi-analytical nonlinear BWR stability analysis
without reference to bifurcation analysis were also published
(March-Leuba et al., 1986; Akcasu et al., 1971).2,3
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(C. Lange).
1 The asymptotic DR is calculated from the poles of the transfer function of the

linearised system equations lying nearest to the unit circle (Hennig, 1999).

2 Note that many studies of nonlinear stability analysis of 2-phase flow with and
without reference to bifurcation analysis were published in the 1970s/80 s, e.g.
(Karve, 1998; Podowski, 1992; Achard et al., 1985).

3 Obviously, all system code stability analyses conducted by time domain codes
solving partial nonlinear differential equations are nonlinear analyses.
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In the last few years an advanced ROMwas developed at PSI and
TUD (Dokhane, 2004; Lange, 2009), which is partially based (the
thermal-hydraulics channel model and the fuel dynamics) on the
ROM previously developed at University of Illinois (Uddin, 1981;
Karve et al., 1997). This ROM was qualified for practical BWR sta-
bility analysis (Lange, 2009; Lange et al., 2011) by model im-
provements and input data adjustments (to system code steady-
state results). Hence it was meaningful to couple this ROM with a
bifurcation analysis code (in this case BIFDD (Hassard et al., 1981))4

and apply the ROM-BIFDD and a validated system code (like
RAMONA 5-2 (Wulff et al., 1984)) side by side in a complementary
sense. We called this procedure the ROM-RAM method (Lange
et al., 2011). The method provides, in a first (ROM) step, an over-
view of the stability landscape in the vicinity of the selected BWR
operational point and uses, in a second step (RAM), a system code
(RAM) containing a sufficiently detailed BWR model for more
precise calculation. Hence, from the first step we know what we
have to expect, and the unambiguous interpretation of the system
code results should be easier. Taking into account that the BWR
stability analysis is a nonlinear dynamics problem and that the
linear analysis is a specific subset of it (theorem of Hartmane
Grobman (Guggenheimer and Holmes, 1984)), the RAM-ROM
methodology is, from our point of view, an appropriate approach
for a comprehensive understanding of the dynamical system
stability.

In order to motivate this “nonlinear thinking” versus “linear
thinking”, in this paper we will demonstrate some examples of
phenomena which can only be understood in nonlinear terms, and
where linear interpretation leads to incorrect conclusions. First, we
will demonstrate that the stability state will change discontinu-
ously if a nonlinear dynamical system under parameter variation
encounters a Hopf bifurcation. This discontinuity in the stability
behaviour even occurs though linear stability indicators like DR
may formally change continuously (the DR will lose its property as
a stability indicator if a non-hyperbolic fixed point is reached). If in
a BWR core, e.g. two spatial neutron flux modes (power modes) are
excited to oscillate and both modes are differently stable, a DR
measurement by the monitoring system will return a jump in the
DR history if the measurement device sensitivity is high enough
with respect to the limit cycle mode (limit cycle amplitude is
dominant). This DR jump is not explainable by a linear model
(Pàzsit, 1995) because in a linear system a limit cycle oscillation
state does not exist. Thus, the explanation of the DR jump discussed
e.g. in Pàzsit (1995) is correct for cases where both spatial modes
are stable but oscillate with different magnitudes, and the DR’s are
significantly different (hyperbolic fixed points). Furthermore, we
will show that a jump in the DR can be observed when the BWR is
working in a post-subcritical bifurcation regime characterised by
the coexistence of different stability states (stable fixed point, sta-
ble and unstable limit cycles). In this scenario, a turning-point must
exist. By reaching this turning point, the DR may jump to unity
under parameter variation if the monitoring system first returns
the DR with respect to the stable fixed point (for not too large
parameter perturbations, see Section 5).

In order to demonstrate that “thinking in the linear world” can
lead to misinterpretation, we add a non-nuclear example (appen-
dix C). The Tacoma bridge failure in the 1930s in the USA is a typical
instability event which was at first misinterpreted as a linear
resonance problem. Detailed investigations (Parkinson and Smith,
1964; Novak, 1971; Thomson, 1982) revealed the correct reasons
of this failure as a complex stability multi-state, a saddle node
bifurcation of cycles.

2. Remarks to linear and nonlinear stability analysis

Generally, stability analysis is the investigation of the temporal
behaviour of state variables after an internal or external perturba-
tion is imposed on the dynamical system, while one ormore system
parameters will be varied in their domain of definition. If the sys-
tem is stable, all state variables converge to the equilibrium point
(singular fixed point or in its close neighbourhood, also called
“Lyapunov stability” (Hetrick, 1971; Akcasu et al., 1971)). If the
system is unstable, at least one of the state variables is diverging in
an oscillatory or exponential manner. The critical value of the sys-
tem parameter(s) which separate stable fixed points from unstable
ones is the so-called stability boundary. In the following (see also
Appendix A) we summarise some definitions and results of the
bifurcation theory for the readers convenience whereupon the
phenomena Hopf bifurcation and generalised Hopf bifurcation are
of greatest importance for the understanding of our concern.

2.1. Dynamical system, state space, orbit, fixed point, limit cycle

For a mathematical description we follow (Guggenheimer and
Holmes, 1984; Hetrick, 1971; Kuznetsov, 1998; Seydel, 2012;
Neyfeh and Balachandran, 1995; Strogatz, 1994). A BWR loop con-
stitutes a nonlinear dynamical system described by a set of partial
differential equations
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in the case of distributed parameter systems like system codes5 or
ordinary differential equations
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in the case of lumped parameter systems (reduced order model
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vector (also called control parameter vector with m components)
and t˛R is the time. The number of all possible system states of (2)
is called the state space X˛Rn.

In the following, we analyse the stability of an autonomous ( F
!
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not explicitly time-dependent) time-continuous dynamical system
(2). For this purpose, we consider the evolution that determines the
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0 for all t. In this case, the steady state solution
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In contrast to a fixed point, a cycle is a non-equilibrium (peri-

odic) orbit C, such that each point X
!

c˛C satisfies

4 In the meantime there are more powerful bifurcation analysis codes available.

5 System code: integrated BWR loop model, the coupled neutron kinetic and
thermal-hydraulic PDE’s are solved.

6 Reduced order model: spatial averaged PDE but the stability properties of the
resulting ordinary DE (ODE) are very similar to the PDE of the system code equations.
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