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a b s t r a c t

Nuclear power plant (NPP) is a complex system with abundant operation data and various fault types.
Moreover, in most cases, change of system parameters and prompt of the alarm system can not
necessarily tell us directly what types the fault belongs to or where it lies in. When multiple faults occur,
there is no one-to-one relationship between the fault symptom and the fault itself. Furthermore, the
degree and response rate of the fault are different, so some faults are gradual and some are sudden. It is
thus clear that for different faults, we need to conduct combined diagnosis with a variety of diagnostic
methods to ensure accuracy and instantaneity in NPP fault diagnosis. According to the characteristic of
the distributed function of equipment and the digital instrument and control (I&C) system, we studied
and designed the distributed condition monitoring and fault diagnosis system in NPP. Based on the
“disassemble-synthesizing” diagnostic idea, this paper proposed an intelligent diagnosis method which
applied the fuzzy neural network (FNN) in doing local diagnosis and multi-source information fusion
technology in global diagnosis. The simulation result showed that this method can quickly and
accurately complete the tasks of diagnosing different levels of the single fault and different types of
multiple faults.

� 2013 Published by Elsevier Ltd.

1. Introduction

Since the discovery of natural radioactivity in 1896, artificial
radioactivity in 1934 and nuclear fission in 1938, nuclear science
has been developing with an amazing speed and has made
extraordinary achievements. Nuclear energy has made great
contribution to the development of our society and the progress of
economy. It is the worldwide human’s goal to make use of nuclear
energy in a safe and peaceful way, however, the nuclear accident or
will go against the human’s good wishes, destroy the ecological
environment on the earth and even threaten people’s life and
health. As for the Three Mile Island nuclear accident took place in
the U.S. in 1979 and the Chernobyl nuclear disaster in Soviet Union
in 1986, many people got scared at mere mention of radioactivity
for a long time. On Mar. 11, 2011, affected by earthquake and
tsunami in Japan, radioactive substances leaked out from the
Fukushima NPP, causing a worldwide nuclear panic and drawing

people’s overwhelming attention to NPP safety once more. So how
to ensure the safety of NPP has become a major problem awaiting
for immediate solution (Bevelacqua, 2012; Bowyer et al., 2011). In
view of this, the International Atomic Energy Agency (IAEA), the
World Association of Nuclear Operation (WANO), the US Nuclear
Regulatory Commission (NRC) and other nuclear organizations put
forward the importance of developing the computer based Oper-
ator Support System (OSS). The OSS provide operational support for
NPP operators, including the operational instructor under normal
running condition, the fault diagnosis technology during accident
progression, the safety analysis and control instructor and so on
(Zhang, 1997).

Fault detection and diagnosis (FDD) technology during the ac-
cident progression has always been given high attention in the
NPP(Li and Upadhyaya, 2011; Li et al., 2012). Appling the effect
method of fault diagnosis, such as artificial neural networks (ANN),
fuzzy logic (FL), data fusion and etc. or hybrid intelligent diagnosis
method of these method integrated, this could provide real-time
help on line for the operators of NPP, and help them distinguish
the fault progression state quickly and accurately, and adopt the
correct operating method to suspend the fault process or alleviate
the consequences of the accident. As shown in Table 1, fault
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diagnosis methods can be classified intomodel-based methods and
model-free methods. The latter can be further classified into data-
driven methods (multivariate) and signal-based methods (univari-
ate). Over the past four decades, various fault diagnosis methods,
especially model-based methods and data-driven methods, have
been applied to NPPs (Hashemian, 2011; Uhrig, and Hines, 2005).
Examples of model-based condition monitoring can be found in
Zhao and Upadhyaya (2006) and Gross et al. (1997). Among data-
driven tools, ANN and Principal Component Analysis (PCA)-based
tools (Upadhyaya et al., 2003; Lu and Upadhyaya, 2005) are most
popular. While model-based techniques have their advantages in
terms of physical understanding, their reliability and computational
efficiency for fault detection often are less attractive when the

systems become more complex. Alternatively, despite increased
system complexity if the goal is to monitor the inputeoutput in-
formation from a collection of (appropriately calibrated) sensors
while considering the whole system as a black box, data-driven
techniques are expected to remain reliable and efficient. However,
unless the collection of acquired information is handled properly,
data-driven techniquesmay become computationally intensive and
the performance of fault detection may deteriorate due to sensor
degradation. Furthermore, data-driven techniques would require
high volume of training data.

Data-driven modeling based on using ANN in NPP is quite
diversified and it ranges from single component fault diagnosis
(Zhao and Upadhyaya, 2006) to recent works related to fault
diagnosis in the whole nuclear steams supply system (NSSS) (Xin
et al., 2010). Majority of the works (Upadhyaya et al., 2003; Lu
and Upadhyaya, 2005; Xin et al., 2010; Santosh et al., 2009) have
explored Multilayer ANN with back propagation training, as this
type of ANNs has an excellent capacity of approximation and
generalization. In addition to the above-mentioned ANN, other
intelligent information processing techniques, such as FL and data
fusion, have been employed in recent years in FDD and structural
damage detection, largely due to their inherent capabilities in
extracting and attaining precise, reliable, consistent and intelligible
information from imprecise, unreliable, inconsistent and uncertain
data (Gao, 2004; Pedrycz, 1997).

The ANN technique alone, capable of auto-association, self-or-
ganization, self-learning and non-linear modeling, gradually began
to be utilized for FDD. The ANN can provide high training precision
with generalization for continuous function mapping of the un-
derlying process models and has applications for specific output
rules. The FL technique acts tomodel human knowledge in the form

Table 1
Classification of FDD methods.

Model-based
methods

Model-free methods

Data-driven
methods

Signal-based
methods

Parity equations Artificial neural
networks (ANN)

Spectrum analysis

Diagnostic
observers

Fuzzy logic (FL)
Multivariate state
estimate
technique (MSET)

Time-frequency analysis (TFA)

Kalman filters Principal component
analysis (PCA)

Wavelet transform (WT)

Parameter
estimation

Partial least squares
(PLS)
Autoassociative kernel
regression (AAKR)
Expert system (ES)

Autoregressive (AR) signal model
Control charts
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Fig. 1. The structure of Siemens’s TELEPERM XP þ XS system. PU-Process Unit; SU-Sever Unit; AP-Automatic Processor; APT-Automation Processor of Turbine; XU-External Unit;
OM-Operation and Monitoring System; ES-Engineering System; DS-Diagnosis System; OT-Operating Terminal; ET-Engineering Terminal; DT-Diagnosis Terminal; SINEC-SIMATIC
NET; FUM-Function Module; MSI-Monitoring and Service Interface; TXS-Teleperm XS; TXP-Teleperm XP; MCR-Main Control Room; SCR-Standby Control Room; SPACE-
Specification And Coding Environment.
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