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a b s t r a c t

Computer modeling of radiation deep penetration problems is historically based on the discrete
ordinates (SN) formulation. For efficiency reasons, besides accuracy, coarse-mesh spatial discretization is
desirable. The spectral Green’s function (SGF) methods form a class of accurate coarse-mesh numerical
methods as they use polynomial approximations only for the node-edge transverse leakage terms; the
scattering source terms are treated analytically in the numerical algorithm. Therefore, algebraic work and
the computational algorithms of the spectral nodal methods are rather complicated. To alleviate this
negative feature, we offer in this paper a composite spatial grid SGF nodal method for the numerical
solution of one-speed deep penetration SN problems with isotropic scattering in X,Y geometry. This
method uses a rectangular coarse spatial grid, that is coincident with the material region distribution
within the shielding structure. We first transverse integrate the SN equations separately in the x- and y-
coordinate directions inside each material region, and then we introduce flat approximations for the
transverse leakage terms. Furthermore, we use a fine spatial grid to discretize each set of ‘‘one-dimen-
sional’’ SN nodal equations. As the spatial directions are coupled by the transverse leakage terms, we use
an explicit alternate direction technique to converge the numerical solution. In order to verify the offered
method’s accuracy, we present numerical results for typical model problems. Moreover, we compare the
computing performance of this method with the conventional SGF-constant nodal method.

� 2009 Published by Elsevier Ltd.

1. Introduction

Deep penetration problems appear in several nuclear science and
engineering phenomena. Basically they are problems where particle
interaction with target nuclei of the medium does not multiply the
number of particles. The main application is shielding calculations for
radiation protection; however, other applications, such as nuclear
medicine, material science and geophysical studies have evolved over
the years.

In this context, the discrete ordinates (SN) formulation of the
monoenergetic neutron transport equation is the conventional
mathematical model for deterministic computational simulation of
deep penetration problems (Lewis and Miller,1993). The first step of
the SN numerical schemes is the spatial discretization. For efficiency
reasons, besides accuracy, coarse-mesh discretization is also desir-
able. Nodal methods offer accurate results in coarse-mesh calcula-
tions. In these methods, the SN equations are transverse integrated
and analytically solved by introducing polynomial approximations

for the node-edge transverse leakage and scattering source terms.
On the other hand, the spectral Green’s function (SGF) methods
form a class of accurate spectral nodal methods as they use poly-
nomial approximations only for the node-edge transverse leakage
terms. The source terms are treated analytically in the numerical
algorithm. Consequently, spectral nodal methods generate more
accurate results than the conventional nodal methods (Barros and
Larsen, 1992; Dominguez and Barros, 2007). On the other hand, the
algebraic work and the computational algorithms of the spectral
nodal methods are rather complicated. To alleviate this negative
feature, we present in this work a composite spatial grid spectral
Green’s function (CSG-SGF) nodal method for the numerical solu-
tion of one-speed discrete ordinates (SN) deep penetration problems
with isotropic scattering in X,Y geometry.

In the CSG-SGF method, the spatial variable discretization scheme
combines a non-conventional composite grid method with the
traditional transverse integration procedure of the SN nodal methods
(Badruzzaman, 1990). We use a rectangular coarse spatial grid that is
coincident with the material region distribution and within this grid
we transverse integrate the SN equations. Then, we introduce constant
approximations for the transverse leakage terms yielding two ‘‘one-
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dimensional’’ problems, coupled by these leakage terms. In addition,
we use a fine spatial grid to discretize each ‘‘one-dimensional’’ SN

nodal equation, using the one-dimensional SGF method (Barros and
Larsen, 1990), that treats analytically the scattering source terms and
generates numerical solutions that are completely free of spatial
truncation errors. As the spatial directions are coupled by the trans-
verse leakage terms, we use an explicit alternating direction tech-
nique to converge the numerical solution.

In the next section we present the mathematical basis on the
present CSG-SGF nodal method with constant approximation for
the transverse leakage terms (CSG-SGF-CN). In Section 3, we
describe the numerical iterative scheme used in the CSG-SGF-CN
method. In Section 4, we show the numerical results for typical
deep penetration problems. We conclude, in Section 5 with
a discussion and suggestions for future work.

2. Mathematical basis of the CSG-SGF-CN method

Let us consider a rectangular domain with several regions Ri;j of
height Ly;j and width Lx;i as illustrated in Fig. 1. Each region Ri;j has
constant material properties and the SN equations within region Ri;j
are
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vjmðx; yÞ
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for ðx; yÞ˛Ri;j with i ¼ 1;.; I and j ¼ 1;.; J. In Eq. (1), m ¼ 1;.;M,
M ¼ NðN þ 2Þ=2; mm and hm are the SN angular directions, un are the
angular quadrature weights, st represents the total macroscopic cross
section, jm is the neutron angular flux in the (mm; hm) direction, ss is
the isotropic scattering macroscopic cross section and Qm is a uniform
interior source of neutrons in direction m.

At this point, we describe the first discretization scheme,
introducing an outer coarse spatial grid L whose nodes are coin-
cident with the material regions, meaning that any material region
Ri;j represent a spatial coarse discretization cell Li;j in the outer
coarse grid showed Fig. 1. To obtain the transverse-integrated SN

equations on the coarse grid L, we apply the operator
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to Eq. (1). The result is the x-direction transverse integrated SN

equation
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where we have defined

~jm;jðxÞ ¼
1

Ly;j

Z yjþ1=2

yj�1=2

jmðx;yÞdy; m ¼ 1;.;M; ðx;yÞ˛Ri;j: (4)

Following a similar procedure, we can obtain the y-direction trans-
verse integrated SN equation. The coarse-grid transverse integrated SN

equations are composed of a system of 2M ordinary differential
equations in 4M unknowns, i.e., ~jm;jðxÞ, bjm;iðyÞ, jmðxi�1=2;yÞ and
jmðx;yj�1=2Þ. Therefore, to solve this system with a unique solution,
we introduce constant approximations (Barros and Larsen, 1992) for
the transverse leakage terms along the region edges. The result
appears as
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where

bF y
m;i;j ¼

hm
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hbjm;i;jþ1=2 � bjm;i;j�1=2

i
; m ¼ 1;.;M: (6)

Eq. (5) and the companion equation in the y direction can be
thought of as two one-dimensional problems whose solutions can
be found separately. We obtain the analytical general solution for
Eq. (5) using a spectral analysis technique as described for the
conventional SGF-constant nodal (SGF-CN) method (Barros and
Larsen, 1992).

To discretize these one-dimensional equations, we introduce
independent fine grids Ux and Uy within regions Ri;j. The fine grid
Ux divides each region Ri;j into Ki nodes of height Ly;j and
corresponding width Dx;i;j

k . The other fine grid Uy divides each
region Ri;j into Pj nodes of height Dy;i;j

p and corresponding width
Lx;i. The geometry of the two inner fine spatial grids is repre-
sented in Fig. 2.

Moreover, we obtain the spatial balance discretized equations
for the x-dependent problem applying the operator

1
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xk�1=2
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to Eq. (5). The resulting equation is
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where
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For each spatial cell of the inner fine grid Ux, Eq. (8) represents
a system of M algebraic linear equations in 2M unknowns [~jm;kþ1=2;jFig. 1. Domain of solution and outer coarse grid L.
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