Contents lists available at ScienceDirect

Progress in Nuclear Energy

journal homepage: www.elsevier.com/locate/pnucene

Composite spatial grid spectral nodal method for one-speed discrete ordinates deep penetration problems in *X*,*Y* geometry

Dany S. Dominguez^{a,*}, Francisco B.S. Oliveira^a, Hermes Alves Filho^b, Ricardo C. Barros^b

^a Laboratório de Computação Científica, LCC, Departamento de Ciências Exatas e Tecnológicas, DCET, Universidade Estadual de Santa Cruz, UESC,

Rodovia Ilhéus/Itabuna, km 16, Salobrinho, 45662-000, Ilhéus, BA, Brazil

^b Departamento de Modelagem Computacional, Instituto Politécnico, IPRJ, Universidade do Estado do Rio de Janeiro, UERJ, Caixa Postal 97282, 28601-970, Nova Friburgo, RJ, Brazil

Keywords: Neutron transport theory Discrete ordinates Spectral nodal methods Composite spatial grids

ABSTRACT

Computer modeling of radiation deep penetration problems is historically based on the discrete ordinates (S_N) formulation. For efficiency reasons, besides accuracy, coarse-mesh spatial discretization is desirable. The spectral Green's function (SGF) methods form a class of accurate coarse-mesh numerical methods as they use polynomial approximations only for the node-edge transverse leakage terms; the scattering source terms are treated analytically in the numerical algorithm. Therefore, algebraic work and the computational algorithms of the spectral nodal methods are rather complicated. To alleviate this negative feature, we offer in this paper a composite spatial grid SGF nodal method for the numerical solution of one-speed deep penetration S_N problems with isotropic scattering in X,Y geometry. This method uses a rectangular coarse spatial grid, that is coincident with the material region distribution within the shielding structure. We first transverse integrate the S_N equations separately in the x- and ycoordinate directions inside each material region, and then we introduce flat approximations for the transverse leakage terms. Furthermore, we use a fine spatial grid to discretize each set of "one-dimensional" S_N nodal equations. As the spatial directions are coupled by the transverse leakage terms, we use an explicit alternate direction technique to converge the numerical solution. In order to verify the offered method's accuracy, we present numerical results for typical model problems. Moreover, we compare the computing performance of this method with the conventional SGF-constant nodal method.

© 2009 Published by Elsevier Ltd.

1. Introduction

Deep penetration problems appear in several nuclear science and engineering phenomena. Basically they are problems where particle interaction with target nuclei of the medium does not multiply the number of particles. The main application is shielding calculations for radiation protection; however, other applications, such as nuclear medicine, material science and geophysical studies have evolved over the years.

In this context, the discrete ordinates (S_N) formulation of the monoenergetic neutron transport equation is the conventional mathematical model for deterministic computational simulation of deep penetration problems (Lewis and Miller, 1993). The first step of the S_N numerical schemes is the spatial discretization. For efficiency reasons, besides accuracy, coarse-mesh discretization is also desirable. Nodal methods offer accurate results in coarse-mesh calculations. In these methods, the S_N equations are transverse integrated and analytically solved by introducing polynomial approximations

E-mail address: dany66_2000@yahoo.com (D.S. Dominguez).

for the node-edge transverse leakage and scattering source terms. On the other hand, the spectral Green's function (SGF) methods form a class of accurate spectral nodal methods as they use polynomial approximations only for the node-edge transverse leakage terms. The source terms are treated analytically in the numerical algorithm. Consequently, spectral nodal methods generate more accurate results than the conventional nodal methods (Barros and Larsen, 1992; Dominguez and Barros, 2007). On the other hand, the algebraic work and the computational algorithms of the spectral nodal methods are rather complicated. To alleviate this negative feature, we present in this work a composite spatial grid spectral Green's function (CSG-SGF) nodal method for the numerical solution of one-speed discrete ordinates (*S*_N) deep penetration problems with isotropic scattering in *X*,*Y* geometry.

In the CSG-SGF method, the spatial variable discretization scheme combines a non-conventional composite grid method with the traditional transverse integration procedure of the S_N nodal methods (Badruzzaman, 1990). We use a rectangular coarse spatial grid that is coincident with the material region distribution and within this grid we transverse integrate the S_N equations. Then, we introduce constant approximations for the transverse leakage terms yielding two "one-

^{*} Corresponding author. Tel.: +55 7388087098.

^{0149-1970/\$ –} see front matter \odot 2009 Published by Elsevier Ltd. doi:10.1016/j.pnucene.2009.04.004

dimensional" problems, coupled by these leakage terms. In addition, we use a fine spatial grid to discretize each "one-dimensional" S_N nodal equation, using the one-dimensional SGF method (Barros and Larsen, 1990), that treats analytically the scattering source terms and generates numerical solutions that are completely free of spatial truncation errors. As the spatial directions are coupled by the transverse leakage terms, we use an explicit alternating direction technique to converge the numerical solution.

In the next section we present the mathematical basis on the present CSG-SGF nodal method with constant approximation for the transverse leakage terms (CSG-SGF-CN). In Section 3, we describe the numerical iterative scheme used in the CSG-SGF-CN method. In Section 4, we show the numerical results for typical deep penetration problems. We conclude, in Section 5 with a discussion and suggestions for future work.

2. Mathematical basis of the CSG-SGF-CN method

Let us consider a rectangular domain with several regions R_{ij} of height $L_{y,i}$ and width $L_{x,i}$ as illustrated in Fig. 1. Each region R_{ij} has constant material properties and the S_N equations within region R_{ij} are

$$\mu_{m} \frac{\partial \psi_{m}(x, y)}{\partial x} + \eta_{m} \frac{\partial \psi_{m}(x, y)}{\partial y} + \sigma_{t_{ij}} \psi_{m}(x, y)$$
$$= \frac{\sigma_{s_{ij}}}{4} \sum_{n=1}^{M} \psi_{n}(x, y) \omega_{n} + Q_{m, ij}$$
(1)

for $(x, y) \in R_{i,j}$ with i = 1, ..., I and j = 1, ..., J. In Eq. (1), m = 1, ..., M, M = N(N+2)/2; μ_m and η_m are the S_N angular directions, ω_n are the angular quadrature weights, σ_t represents the total macroscopic cross section, ψ_m is the neutron angular flux in the (μ_m, η_m) direction, σ_s is the isotropic scattering macroscopic cross section and Q_m is a uniform interior source of neutrons in direction m.

At this point, we describe the first discretization scheme, introducing an outer coarse spatial grid Λ whose nodes are coincident with the material regions, meaning that any material region $R_{i,j}$ represent a spatial coarse discretization cell $\Lambda_{i,j}$ in the outer coarse grid showed Fig. 1. To obtain the transverse-integrated S_N equations on the coarse grid Λ , we apply the operator

$$\frac{1}{L_{y,j}} \int_{y_{j-1/2}}^{y_{j+1/2}} dy$$
 (2)

Fig. 1. Domain of solution and outer coarse grid Λ .

to Eq. (1). The result is the x-direction transverse integrated $S_{\rm N}$ equation

$$\mu_{m} \frac{\mathrm{d}}{\mathrm{d}x} \tilde{\psi}_{m,j}(x) + \sigma_{t_{ij}} \tilde{\psi}_{m,j}(x) = \frac{\sigma_{s_{ij}}}{4} \sum_{n=1}^{M} \tilde{\psi}_{n,j}(x) \omega_{n} + Q_{m,ij}$$
$$- \frac{\eta_{m}}{L_{y,j}} \Big[\psi_{m} \Big(x, y_{j+1/2} \Big) \\- \psi_{m} \Big(x, y_{j-1/2} \Big) \Big]$$
(3)

where we have defined

$$\tilde{\psi}_{m,j}(x) = \frac{1}{L_{y,j}} \int_{y_{j-1/2}}^{y_{j+1/2}} \psi_m(x,y) dy, \quad m = 1, \dots, M, \quad (x,y) \in R_{i,j}.$$
(4)

Following a similar procedure, we can obtain the *y*-direction transverse integrated S_N equation. The coarse-grid transverse integrated S_N equations are composed of a system of 2*M* ordinary differential equations in 4*M* unknowns, i.e., $\tilde{\psi}_{m,i}(x)$, $\hat{\psi}_{m,i}(y)$, $\psi_m(x_{i\pm 1/2},y)$ and $\psi_m(x,y_{j\pm 1/2})$. Therefore, to solve this system with a unique solution, we introduce constant approximations (Barros and Larsen, 1992) for the transverse leakage terms along the region edges. The result appears as

$$\mu_m \frac{\mathrm{d}}{\mathrm{d}x} \tilde{\psi}_{m,j}(x) + \sigma_{t_{ij}} \tilde{\psi}_{m,j}(x) = \frac{\sigma_{s_{i,j}}}{4} \sum_{n=1}^M \tilde{\psi}_{n,j}(x) \omega_n + Q_{m,i,j} - \widehat{F}_{m,i,j}^y$$
(5)

where

$$\widehat{F}_{m,i,j}^{y} = \frac{\eta_{m}}{L_{y,j}} \Big[\widehat{\psi}_{m,i,j+1/2} - \widehat{\psi}_{m,i,j-1/2} \Big], \quad m = 1, ..., M.$$
(6)

Eq. (5) and the companion equation in the *y* direction can be thought of as two one-dimensional problems whose solutions can be found separately. We obtain the analytical general solution for Eq. (5) using a spectral analysis technique as described for the conventional SGF-constant nodal (SGF-CN) method (Barros and Larsen, 1992).

To discretize these one-dimensional equations, we introduce independent fine grids Ω_x and Ω_y within regions $R_{i,j}$. The fine grid Ω_x divides each region $R_{i,j}$ into K_i nodes of height $L_{y,j}$ and corresponding width $\Delta_k^{x,i,j}$. The other fine grid Ω_y divides each region $R_{i,j}$ into P_j nodes of height $\Delta_p^{y,i,j}$ and corresponding width $L_{x,i}$. The geometry of the two inner fine spatial grids is represented in Fig. 2.

Moreover, we obtain the spatial balance discretized equations for the *x*-dependent problem applying the operator

$$\frac{1}{\Delta_k^{x,ij}} \int_{x_{k-1/2}}^{x_{k+1/2}} dx$$
(7)

to Eq. (5). The resulting equation is

$$\frac{\mu_m}{\Delta_k^{x,ij}} \left(\tilde{\psi}_{m,k+1/2,j} - \tilde{\psi}_{m,k-1/2,j} \right) + \sigma_{t_{ij}} \overline{\psi}_{m,k,j}^x$$

$$= \frac{\sigma_{s_{ij}}}{4} \sum_{n=1}^M \overline{\psi}_{n,k,j}^x \omega_n + Q_{m,ij} - \widehat{F}_{m,ij}^y$$
(8)

where

$$\overline{\psi}_{m,k,j}^{x} = \frac{1}{\Delta_{k}^{x,i,j}} \int_{x_{k-1/2}}^{x_{k+1/2}} \widetilde{\psi}_{m,j}(x) dx, \quad m = 1, \dots, M.$$
(9)

For each spatial cell of the inner fine grid Ω_x , Eq. (8) represents a system of *M* algebraic linear equations in 2*M* unknowns $[\tilde{\psi}_{m,k+1/2,j}]$

Download English Version:

https://daneshyari.com/en/article/1741341

Download Persian Version:

https://daneshyari.com/article/1741341

Daneshyari.com