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a b s t r a c t

Renewable power output is an important factor in scheduling and for improving balanced area control
performance. This investigation develops an evolutionary seasonal decomposition least-square support
vector regression (ESDLS-SVR) to forecast monthly solar power output. The construction of the ESDLS-
SVR uses seasonal decomposition and least-square support vector regression (LS-SVR). Genetic algo-
rithms (GA) are used simultaneously to select the parameters of the LS-SVR. Monthly solar power output
data from Taiwan Power Company are used. Empirical results indicate that the proposed forecasting
system demonstrates a superior performance in terms of forecasting accuracy. A comparative study has
been introduced showing that the ESDLS-SVR model performance is better than autoregressive inte-
grated moving average (ARIMA), seasonal autoregressive integrated moving average (SARIMA), gener-
alized regression neural network (GRNN) and LS-SVR models.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Transition to an energy-based economy that relies on renewable
resources involves complex issues, such as variability, capacity and
reliability of non-dispatchable energy resources (e.g., solar, wind, or
tidal). As many countries are actively promoting cleaner sources of
energy, the global demand for renewable energy integration to the
power grids highlights the importance of economic and techno-
logical issues associated with growing levels of flat-panel Photo-
Voltaic (PV), Concentrated Solar Power (CSP) and Concentrated PV
(CPV) penetration into the power grid. These concerns arise from
the variable nature of the solar resource, seasonal deviations in
production and load profiles, the high cost of energy storage, and
the attempt to obtain a balance between grid flexibility and reli-
ability (Denholm and Margolis, 2007a, 2007b; Inman et al., 2013).
In order to improve the integration stability of the output of solar
systems into electric grids and optimize decision making at the
management level of local storage systems and bidding into mar-
kets, the forecasting of solar systems is vital to reliably integrate
them into the electricity grid.

Inman et al. (2013) reviewed the solar forecasting methods from
2008 to 2013, and found that high accuracy forecast systems are
required for multiple time horizons. Solar power forecasting can be
divided into the type of forecasting technique: numerical weather
prediction (NWP)-based forecasting (Perez et al., 2010; Mathiesen
and Kleissl, 2011), stochastic forecasting (Bacher et al., 2009; Yang
et al., 2012), artificial intelligence (AI) forecasting model (Gordon,
2009; Paoli et al., 2010; Martin et al., 2010; Mandal et al., 2012;
Pedro and Coimbra, 2012), and the hybrid forecasting model
(Marquez et al., 2013). Recently, Bouzerdoum et al. (2013) proposed
a hybrid forecasting model that combines Seasonal autoregressive
integrated moving average (SARIMA) with support vector machine
(SVM), for short-term power forecasting. This hybrid model can
obtain better performance than the SARIMA and SVM models. Li
et al. (2014) used Auto-Regression Moving Average-eXogenous
(ARMAX), which improves the forecast accuracy of power output
over the autoregressive integrated moving average (ARIMA) model.
The review of past literature on solar power forecasting suggests
the followings: (1) the solar power forecasting model for the
multiple time horizons and variables should be developed; (2) the
AI forecasting model has been successfully applied in solar power
forecasting model; (3) Marquez et al. (2013) and Li et al. (2014)
proposed hybrid forecasting methods which can successfully
improve performance.
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Recently, SVMs have proven one of the most powerful tools in
dealing with classification problems (Cortes and Vapnik, 1995;
Vapnik, 1995). SVMs employ the structural risk minimization
principle that aims to minimize an upper bound of the general-
ization error instead of minimizing the training error. Based on this
principle, SVMs achieve an optimum network structure. The SVM is
equivalent to solving a linear constrained quadratic programming
problem so that the solution of SVM is always unique and globally
optimal. Furthermore, with somemodifications, the SVM technique
has been employed in regression and successfully solved time se-
ries problems in many fields (Cao, 2003; Cao and Gu, 2002; Tay and
Cao, 2001; Hong and Pai, 2007; Lin and Pai, 2010; Lin et al., 2011).
An alternative method, the least square support vector regression
(LS-SVR) has been proposed to minimize sum square errors (SSEs)
of training data sets (Van Gestel et al., 2001), while simultaneously
minimizing the margin error (Peng andWang, 2009; Suykens et al.,
2002). Van Gestel et al. (2001) combined the Bayesian evidence
framework with LS-SVR for financial time series forecasting. In
predicting the DAX30 index, LS-SVR achieved a better performance
than the ARIMA and nonparametric models. The LS-SVR has been
successfully used to solve time series problems, and proven to be a
superior forecasting model (Li et al., 2007, 2008; Jayadeva et al.,
2008; Cui and Yan, 2009; Goodarzi et al., 2010; Lin et al., 2010;
Qin et al., 2010; Quan et al., 2010; Yang et al., 2010; Deng and
Yeh, 2011; Lin, 2013; Lin et al., 2013; Hung and Lin, 2013; Pai
et al., 2014; Xie et al., 2014).

The aim of the present work is to develop an accurate evolu-
tionary seasonal decomposition least-square support vector
regression (ESDLS-SVR) model for forecasting the power output by
using historical records of the produced power. Inman et al. (2013)
and Bouzerdoum et al. (2013) mentioned that solar power output
has seasonal deviations that are affected by solar radiation time of
day. Moreover, the LS-SVR can achieve a better performance in time
series problems by observing previous researches. ESDLS-SVR
consists of seasonal decomposition, LS-SVR and genetic algorithm
(GA) for improving the accuracy rate of the solar power forecasting
model. The seasonal decomposition can reduce complexity of
seasonal time series data. Based on the decomposition matrix, the
LS-SVR predicts seasonal time series matrix. Furthermore, GA is
employed to search optimal parameters. The results are compared
with those from the ARIMA, SARIMA, GRNN and LS- SVR models,
and the effectiveness of the ESDLS-SVR in long-term power output
forecasting is evident.

The remainder of this paper is organized as follows: Section 2
presents the main construct of the ESDLS-SVR; Section 3 shows
the solar power output dataset in Taiwan, discusses the experi-
mental results, and compares them with the performances of
various other models; Section 4 presents the conclusions.

2. Evolutionary seasonal decomposition least-square support
vector regression

By enhancing the characteristics of the SVM model, the LS-SVR
technique successfully integrated the least square method into the
SVM model, and it has been applied in regression problems. In this
study, the ESDLS-SVR is designed to effectively cope with seasonal
time series data. The seasonal time series data are often compli-
cated and thus difficult to predict. Effective seasonal time series
forecasting is one of the topical subject in the forecasting system;
hence, the ESDLS-SVR is combined seasonal decomposition with
LS-SVR. Firstly, the seasonal decomposition procedure is conduct-
ed. This procedure can effectively produce detrended and season-
ally adjusted series data, thereby reducing the complexity of
seasonal time series data. Secondly, based on the decomposition
data Dt matrix, the SDLS-SVR employs the forecasting capability of

LS-SVR to predict the seasonal time series matrix. In addition, the
GA technique is utilized to determine the proper parameters of the
SDLS-SVR model. Finally, forecasting values and performance
criteria are derived. Fig. 1 shows the framework of ESDLS-SVR.

This study uses a decomposition method, which has been suc-
cessfully applied in time series forecasting models (Wang et al.,
2012; Lin et al., 2012; Cheng and Wei, 2014; Xie et al., 2014). In
order to capture seasonal characteristics of observations over past
years, this study uses a popular multifactor model. The multifactor
model can be defined as follows:

Yt ¼ f ðTtÞ � St � ε (1)

where Yt is the forecast value of time series at time t, f(Tt) is the
estimative value of trend Tt with SVR method at time t, St is the
seasonal influence at time t and ε is the model noise. Therefore, the
multifactor model can derive decomposition data Dt, which are
respectively detrended data DTt and seasonally adjusted data DSt
as:

Dt ¼ ½DTt ;DSt � ¼ ½ðSt � εÞ=Yt ; ðf ðTtÞ � εÞ=Yt � (2)

The DLS-SVR approach is employed to approximate an unknown
function using an adjusted training data set {(xt, Dt)}.

The DLS-SVR regression function can be formulated as Eq. (3).
EDLS-SVR introduces decomposition and least squares to the SVR
method by formulating the regression problem as:

Min J1ðw; b; eÞ ¼ 1
2
kwk2 þ 1

2
C
XN
t¼1

e2t

subjective to(
DTt ¼ wT4ðxtÞ þ bþ et ; t ¼ 1;2;/;N:cDt2DTt

DSt ¼ wT4ðxtÞ þ bþ et ; t ¼ 1;2;/;N:cDt2DSt

(3)

As the decomposition method can divide, detrend and season-
ally adjust time series, the decomposition Lagrangian can be
introduced as:

L1ðw; b; e;gÞ ¼ J1ðw; b; eÞ þ
XN
t¼1

gt

�
Dt �wT4ðxtÞ � b� et

�
;

(4)

where g is the Lagrangian multiplier vector. The conditions for
optimality are:

vL1
vw

¼ 00w ¼
XN
t¼1

gt4ðxtÞ;

vL1
vb

¼ 00
XN
t¼1

gi ¼ 0;

vL1
vei

¼ 00et ¼ 1
C
gt ; t ¼ 1;…;N;

8>>>><
>>>>:

vL1
vgi

¼ 00DTt ¼ wT4ðxtÞ þ bþ et ; t ¼ 1;…;N:cDt2DTt

vL1
vgi

¼ 00DSt ¼ wT4ðxtÞ þ bþ et ; t ¼ 1;…;N:cDt2DSt

(5)

Here, the value of the kernel function is equal to the inner
product of two vectors. The relations of K ¼ (ktj)N � N, ktj ¼ k(xt, xj)
and V ¼ diag{1/C, 1/C, …, 1/C} can be denoted. Thus,
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