Journal of Cleaner Production 130 (2016) 235-247

Contents lists available at ScienceDirect

Journal of Cleaner Production

journal homepage: www.elsevier.com/locate/jclepro

Sustainability-oriented innovation system analyses of Brazil, Russia, India, China, South Africa, Turkey and Singapore

Şiir Kılkış^{*}

The Scientific and Technological Research Council of Turkey, Ankara, Turkey

ARTICLE INFO

Article history: Received 25 April 2015 Received in revised form 12 March 2016 Accepted 14 March 2016 Available online 8 April 2016

Keywords: Innovation system Functional dynamics Sustainable development Emerging economy

ABSTRACT

The coherency of research, development, and innovation processes are vital in promoting a more resource efficient society. Sustainability-oriented innovation systems define specific kinds of innovation systems, i.e. those that are directed to the aims of sustainable development. This paper develops an integrated method with four layers of analysis to evaluate the priorities and performances of such systems. The method is applied to a sample of emerging and innovation based economies, namely Brazil, Russia, India, China, South Africa, Turkey, and Singapore. The analyses consider the 6 main activities or functional dynamics of innovation systems and a set of 19 keywords. The keywords relate to the thematic clusters of renewable energy technologies, energy efficiency, and environmental management. The priorities of the countries in each main interaction of the system are classified accordingly. The priorities are compared to the existing level of specialization in the keywords based on the intermediate outputs of the system. The analyses cover 153,838 papers and 15,138 patents between the years 2003 and 2014. A Sustainable Innovation Index is developed to aggregate the normalized values of country performance across all keywords. Singapore receives the highest value (21.17) and the average of Brazil, Russia, India, China, and South Africa is 14.91. The results determine the ability of countries to align priorities and performance towards more mature innovation systems for sustainable development.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Research, development, and innovation can promote a transition to more sustainable societies that are able to decouple economic growth from environmental pressure (Working Group on Decoupling, 2011). In this context, an essential component of resource efficient societies involves effective innovation systems. Innovation systems define the complex system of actors that transform research activities into useful processes, products, and services (Lundvall, 1992). The presence of a synergistic mix of policy instruments can further increase the chances of success for sustainable innovations (Foxon and Pearson, 2008). The outputs of the system, such as technological innovation, can enable increases in resource productivity (Cropper, 2008). Better insight on the systemic nature of sustainable innovation is important to support the means of activating innovation systems to promote sustainable development.

towards more sustainable processes in which resource use and waste production remain within proper environmental limits (Foxon and Pearson, 2008). Several studies have analyzed sustainable innovation at the level of small and medium-sized enterprises (SMEs). Other studies evaluated cases for sustainable innovation at the sectoral or country level. The literature review as presented in the sections below exemplifies the respective studies at the various levels. It further includes studies that provided an outlook for sustainable innovation.

In the literature, sustainable innovation is defined as innovation

1.1.1. Sustainable innovation in SMEs

1.1. Overview of the literature

Among the studies at the firm level, Klewitz and Hansen (2014) conducted a review of the types of sustainability-oriented innovations (SOI) in SMEs. In such studies, SOI were found to give direction to integrating economic, social, and ecological aspects in innovation activities (Hansen et al., 2009). Other authors analyzed SMEs that applied business models based on the triple bottom line. Such SMEs proved to have greater ability in spreading SOI in niche

Cleaner Production

^{*} Atatürk Bulvarı No.: 221, Kavaklıdere, 06100 Ankara, Turkey. E-mail address: siir.kilkis@tubitak.gov.tr.

Nomenclature		Acronyms	
		BRICS	Brazil, Russia, India, China, and South Africa
F_1	facilitation of experimentation and learning	BRICTS	Brazil, Russia, India, China, Turkey, and South Africa
F_2	knowledge development	GDP	gross domestic product
F_3	knowledge diffusion	IGCC	integrated gasification combined cycle
F_4	guidance of search and selection	IPC	International Patent Classification
F_5	market formation	NIC	National Innovation Challenge
F_6	development and mobilization of resources	NRF	National Research Foundation
КС	keyword cluster	R&D	Research and development
k	keyword in the cluster	RTA	Revealed Technological Advantage in Equation (6)
max	maximum value in Equation (7)	· · · · · ·	Bibliometric database
min	minimum value in Equation (7)	SDEWES	Sustainable Development of Energy, Water and
Р	WIPO PatentScope patents in Equations $(4)-(6)$,		Environment Systems
	dimensionless	SI	Specialization Index in Equation (3)
R	Scopus papers in Equations (1)–(3), dimensionless	SME	small and medium-sized enterprises
S	share of papers or patents in Equations $(1)-(6)$,	SOI	sustainability-oriented innovation(s)
	dimensionless	SoIS	sustainability-oriented innovation system(s)
V	normalized value in Equation (7)	SUSIN	Sustainable Innovation Index
ν	data entry value in Equation (7)	TÜBİTAK	The Scientific and Technological Research Council of Turkey
Subscripts		UNFCCC	UN Framework Convention on Climate Change
с	country in the sample	WIPO	World Intellectual Property Organization
w	world total or share		
x	number of relevant entries, dimensionless		

and mass markets (Schaltegger, 2002). SMEs were further able to create more sustainable production and consumption patterns (Schaltegger and Wagner, 2011).

1.1.2. Sustainable innovation at the sectoral level

At the sectoral level, studies on sustainable innovation analyzed aspects of technology clusters or industrial sites. For example, Zapata and Nieuwenhuis (2010) analyzed incremental and radical innovations based on case studies in ethanol, hybrid, and hydrogen fuel cell vehicles. Nilsson et al. (2012) compared the governance structures for biofuel and hybrid electric vehicle technologies in Sweden. Severo et al. (2015) analyzed the impact of cleaner production processes in an automotive cluster of metal and mechanic parts in Serra Gaúcha, Brazil. Bai et al. (2014) assessed the progress of the Eco-Industrial Parks (EIP) initiative in China based on interviews at 33 locations. Zhang et al. (2015) analyzed the efficiency of resource flows at an EIP in Shandong Province, China as one of the sites that implemented industrial ecology.

1.1.3. Sustainable innovation at the country level

At the country level, studies focused on key concerns to accelerate the pace of sustainable innovation. Suzuki (2015) reviewed the barriers for clean technology diffusion with a focus on developing countries. The most frequent barriers were found to be high capital costs and low priority in finance. Other barriers were the lack of an enabling environment based on capacity as well as research and development (R&D) activities (Suzuki, 2015). Vollenbroek (2002) underlined that existing technologies are not sufficient to meet environmental goals. A national program was analyzed as a tool for transition management, namely the Dutch Program for Sustainable Technology Development. The Program targeted a factor 20 increase in eco-efficiency (Vollenbroek, 2002).

1.1.4. Sustainable innovation at an analytical level

In an analytical approach, Medeiros et al. (2014) categorized the literature on environmentally sustainable product innovation

BRICS	Brazil, Russia, India, China, and South Africa
BRICTS	Brazil, Russia, India, China, Turkey, and South Africa
GDP	gross domestic product
IGCC	integrated gasification combined cycle
IPC	International Patent Classification
NIC	National Innovation Challenge
NRF	National Research Foundation
R&D	Research and development
RTA	Revealed Technological Advantage in Equation (6)
Scopus	Bibliometric database
SDEWES	Sustainable Development of Energy, Water and
	Environment Systems
SI	Specialization Index in Equation (3)
SME	small and medium-sized enterprises
SOI	sustainability-oriented innovation(s)
SoIS	sustainability-oriented innovation system(s)
SUSIN	Sustainable Innovation Index
TÜBİTAK	The Scientific and Technological Research Council of
	Turkey
UNFCCC	UN Framework Convention on Climate Change
WIPO	World Intellectual Property Organization

into five categories. The categories involved factors that influenced the adoption of green innovation and the drivers behind green behavior. Other aspects involved methods to develop sustainable products, the effects of sustainable innovation on competitiveness, and collaboration in green technologies. The presence of a specific gap in empirical research for testing and validating critical success factors was identified, including those for cleaner technology research (Medeiros et al., 2014). Bossle et al. (2016) reviewed the methods that were used in 35 studies to assess aspects of eco-innovation. The methods involved mainly the use of surveys and case studies while only two involved patent analysis.

1.1.5. Outlook for sustainable innovation

Beyond specific case studies, Vezzoli et al. (2015) underlined the vitality of a Sustainable Product and Service System to provide alternatives to end-of-pipe solutions to pollution control, cleaner production, and eco-design. Hargroves and Smith (2005) indicated that the sixth wave of innovation will be on clean technologies that radically alter productivity while lightening the load of humanity on the planet. Clean technologies were given to include radical resource productivity, biomimicry, green chemistry, industrial ecology, and renewable energy (Hargroves and Smith, 2005). In an outlook for the future, Khalili et al. (2015) identified characteristics of training programs that are needed to further develop human capacity in support of sustainable development.

1.2. Sustainability-oriented innovation systems

Beyond studies at various levels, an innovation systems approach can be a valuable tool to assess sustainable innovation. The innovation systems approach includes concepts such as technological innovation systems (Carlsson and Stankiewicz, 1991) as well as sectoral systems of innovation (Malerba, 2002). More recently, the concept of a sustainability-oriented innovation system (SoIS) was proposed (Stamm et al., 2009). SoIS is a specific kind of Download English Version:

https://daneshyari.com/en/article/1744054

Download Persian Version:

https://daneshyari.com/article/1744054

Daneshyari.com