Journal of Cleaner Production 111 (2016) 231-252

Contents lists available at ScienceDirect

Journal of Cleaner Production

journal homepage: www.elsevier.com/locate/jclepro

Industrial wastewater treatment network based on recycling and rerouting strategies for retrofit design schemes

Natthapong Sueviriyapan ^a, Uthaiporn Suriyapraphadilok ^{a, *}, Kitipat Siemanond ^a, Alberto Quaglia ^b, Rafiqul Gani ^b

^a The Petroleum and Petrochemical College, Chulalongkorn University, Soi Chulalongkorn 12, Phayathai Road, Pathumwan, Bangkok 10330, Thailand ^b CAPEC-PROCESS, Department of Chemical and Biochemical Engineering, Technical University of Denmark, Søltofts Plads, Building 229, DK-2800 Kgs. Lyngby, Denmark

ARTICLE INFO

Article history: Received 24 December 2014 Received in revised form 15 July 2015 Accepted 19 July 2015 Available online 4 August 2015

Keywords: Recycle Reroute Superstructure Wastewater treatment Water network

ABSTRACT

The advent of complex industrial water/wastewater management problems points to a need for effective systematic design for a sustainable solution. The objective of this work is to extend the research in the area of systematic design of water/wastewater management by further developing and extending a generic model-based synthesis and design framework for retrofit wastewater treatment networks (WWTN) of an existing industrial process. The developed approach is suitable for grassroots and retrofit systems and adaptable to a wide range of wastewater treatment problems. A sequential solution procedure is employed to solve a network superstructure-based optimization problem formulated as Mixed Integer Linear and/or Non-Linear Programming (MILP/MINLP). Data from a petroleum refinery effluent treatment plant together with special design constraints are employed to formulate different design schemes based on recycling and rerouting strategies focusing on completely splitting system and zero liquid discharge (ZLD) opportunity. The base case design of the existing process has been verified against the refinery data, while the grassroots and the retrofit options are generated and compared with the existing process. The network design solutions obtained with effectively computational time from the case study shows an improvement in the reduction of a total annualized cost (TAC) and wastewater discharge rate (WWDR) as a result of water recycling and rerouting options. Pareto plot (trade-off solution graph) for the analysis of such optimal solutions has been applied to implicitly verify the optimality of the solution based on all possible scenarios. Superior retrofit alternatives have been identified based on their performance including cost and environmental impacts and can be used as efficient design guidelines for the future development of the existing wastewater treatment process.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Water is intensively used in most industrial processes, and the concern about shortage of water supply in several areas is increasing. Thus, the challenge and problem regarding sustainability of water resources and optimal water consumption as well as wastewater management have to be addressed more efficiently and effectively through advanced strategies and technologies (Bagatin et al., 2014). One of the interesting approaches to deal with such a problem is to minimize the water consumption as proposed by Wan Alwi and Manan (2006) with respect to

* Corresponding author. Tel.: +66 2 218 4132.

E-mail address: uthaiporn.s@chula.ac.th (U. Suriyapraphadilok).

different levels of water management hierarchy. In addition, the cost of freshwater together with wastewater treatment processes and more rigorous environmental regulations have also motivated the industrial sector to move from a conventional end-of-pipe treatment towards better sustainable solutions (Foo, 2008). Hence, water management is of significance to employ water resource in the most efficient way. Furthermore, retrofit designs in wastewater treatment systems are significant to be addressed systematically because of the change towards new stringent environmental law, the lack of the available freshwater source and so on. Since in any general plants a wastewater system has already been installed, retrofit application is likely to be a more common activity than a grassroots design or synthesis. Selectively recycling of treated wastewater is one of the best alternatives to minimize the amount of freshwater usage and water

Indices		Abbrevia	
		AirS	Air stripper
i, ii	Component	API	American Petroleum Institute separator
k	Block (origin)	AS	Activated sludge
kk	Block (destination)	AsOx	Arsenic oxidation and precipitation
react	Key reactant component	BFW	Boiler feed water
rr	Reaction	BOD	Biological oxygen demand
S	Network step (origin)	BP	Bypass
SS	Network step (destination)	CAPEX	Capital expenditure
tw	Type of waste disposal	CDU	Crude distillation unit
		COD	Chemical oxygen demand
Sets		CPI/PPI	Corrugated/Parallel plate interceptor
I	Contaminants, utilities, species generated	CW	Cooling water
K	Process blocks	DAF	Dissolved air flotation
R	Reactions	DS	Water consumed in a desalter
S	Network steps	ED	Electrodialysis
Т	Waste disposal types	EL	Electricity
		FFU	Flocculation—flotation unit
Paramete		FSS	Fixed suspended solid
$\alpha_{i,kk}$	Fraction of utility component flow mixed with process	G-	Network G's (grassroots system)
	stream	GAC	Granular activated carbon adsorption
u _{ii,i,k}	Specific utility component	GAMS	General algebraic modeling software
Yi,kk,rr	Reaction stoichiometry	IAF	Induced air flotation
$\theta_{\text{react,kk,ri}}$	Conversion of key reactant	IE	Ion exchange
WF _{i,kk}	Waste fraction	LPS	Low pressure steam
$PC_{k,kk}$	Process connection	MAX	Maximum limitation
NS _{kk,ss}	Network step	MBR	Membrane bioreactor
F ^{MAX}	Maximum flow rate	MF/UF	Microfiltration/Ultrafiltration
C ^{MAX} C ^{MAX}	Maximum composition of pollutant	MILP	Mixed integer linear programming
	Flow specification of component i of wastewater	MINLP	Mixed integer non-linear programming
$\pi_{\mathrm{i,kk}}$		MO	Microorganism
a h	source	MOGAS	Motor gasoline
a _{kk} , b _{kk}	Coefficients for capital cost estimation	NF/RO	Nanofiltration/Reverse osmosis
$C_i^U \\ C_{tw}^W \\ C_{kk}^{Re}$	Utility cost	NG	Natural gas
C ^w tw	Waste disposal cost	NLP	Non-linear programming
C_{kk}^{kc}	Recycling water cost	NS	Ammonia stripper
		0&G	Oil and grease
Variables		OPEX	Operational expenditure
$R_{i,kk}$	Utility flow	P-	Network P's (Existing wastewater treatment process of
$F_{i,kk}^{ln}$	Inlet flow of component i		the case study)
$F_{i,k,kk}^{ln}$	Inlet flow of component i from process block k to	PACT	Powdered activated carbon treatment
-,-,	process block kk	RBC	Rotating biological contactor
$F^M_{i,kk}$	Component flow after mixing	SS	Hydrogen sulfide stripper
$F_{i,kk}^R$	Component flow after reaction	SWS	Sour water stripper
i,kk		TAC	Total annualized cost
$F_{i,kk}^W$	Component flow of waste separated with waste	TF	Trickling filter
Fout	separator	TSS	Total suspended solid
Fout i,kk	Outlet flow of component i after the waste separation	TWN	Total water network
$F_{i,kk,k}^{Out}$	Outlet flow of component i from process block kk to	UOM	Unit of measurement
	process block k	UP	Upper bound
$SF_{kk,k}$	Split fraction	WAO	Wet air oxidation
y_k	Selection of process block k (binary variable)	WEF	Water effluent fraction
Inv_{kk}	Investment cost for process block kk	WUN	Water-using network
UC_{kk}	Total utility cost for process block kk	WWD	Wastewater discharge
WC_{kk}	Total waste disposal cost for process block kk	WWDR	8
		WWTN	
		ZLD	Zero liquid discharge

discharged. However, the industrial wastewater involves a wide variety of contaminants that depend on specific characteristics of the process. Also, there exist rigorous limitations due to environmental regulations and economics. Therefore, the type and sequence of treatment technologies have to be considered prudently to overcome those restrictions to identify the most effective water/wastewater minimization and management in terms of releasing and recycling. Download English Version:

https://daneshyari.com/en/article/1744383

Download Persian Version:

https://daneshyari.com/article/1744383

Daneshyari.com