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Phase-field modeling is not only a powerful simulation tool to

predict the microstructure evolution but also a useful

theoretical method to study the interface kinetics. In this paper,

the thermodynamic principles for and the recent progress in the

phase-field modeling of isothermal solidification of binary alloys

are reviewed. Different phase-field models with or without the

condition of equal concentrations or equal diffusion potentials

are reformulated from the entropy/free energy functional or the

thermodynamic extremal principle. Their physics behind,

problems and relation to the sharp interface models are

analyzed. The importance to solve directly the additional

constraints in the modeling system self-consistently in

thermodynamics is highlighted.
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Introduction
Sharp interface models versus phase-field models

Many inhomogeneous systems consist of domains of well-

defined phases separated by a distinct interface [1], for

example the solid (S) and liquid (L) are separated by an S/

L interface upon solidification. In the conventional sharp

interface models, the interface is assumed to be infinitely

sharp and for each domain, diffusional equations, con-

servation laws at and kinetics of the moving interface are

formulated [2]. Taking the isothermal solidification of a

binary alloy system as an example, the diffusion equations

for solute concentration ci (i = S, L)

@ci

@t
¼ �Dir2ci (1)

should be solved together with the mass conservation law

at the interface

Vðc�S � c�LÞ ¼ VmðJS�
B � JL�

B Þ ¼ �DSrc�S þ DLrc�L (2)

and the kinetics of interface [3]1

V

V0

¼ � c�LDm�B þ ð1 � c�LÞDm�A
RT

(3)

V

VDI

c�L � c�S
c�Sð1 � c�LÞ

¼ � m̃�L � m̃�S
RT

¼ �Dm�A � Dm�B
RT

(4)

In the bulk phases, there is one dissipative process (i.e.

solute diffusion Ji
B ¼ �Dirci). While at the interface,

there are two dissipative processes (i.e. interface

migration JC = V/Vm and trans-interface diffusion JD ¼
Vðc�L � c�SÞ=Vm [4]). Their dissipations Dg�C ¼ c�LDm�B þ
ð1 � c�LÞDm�A is shown in the molar Gibbs free energy

diagram Figure 1.

Application of sharp interface models however is not

predominant. First, their simulations require tracking

explicitly the moving interface, which is quite difficult

for the complex interface morphologies (i.e. the front-

tracking problem). Second, a set of non-linear equations

for interface kinetics (e.g. Eqs. (3) and (4)) must be solved

at each point of the interface to obtain the interface

conditions (e.g. c�S, c�L and T for given V) which also

decreases considerably the numerical efficiency.

The above problems are avoided by the phase-field models

(PFMs). By introducing the phase-field variables that are

constant in each domain (e.g. fS = f = 1, fL = 0) and

change continuously across the diffusive interface (e.g.

from 1 to 0), the interface morphologies are given implicitly

by the contour of constant values of phase-field variables.

The conservation laws at and the kinetics of the moving

interface are incorporated into the diffusion equations and

the kinetic equations of phase-field variables that are

formulated for the whole system but not each domains.

There are no boundary conditions at the interface and the

evolution of the system is described in the absence of non-

linear equations of interface kinetics. Because of its

particular advantage over the sharp interface models,

1 This interface kinetic model is derived from the linear but not the

non-linear thermodynamics and does not consider the effect of solute

diffusion in solid [3].
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phase-field modeling is now widely used in solidification,

solid-state phase transformation and so on [1,2,5–8]. It is

not only a powerful simulation tool to predict the micro-

structure evolution but also a useful theoretical method to

study the interface kinetics.

Problem statement and motivation

This paper focuses on the phase-field modeling of iso-

thermal solidification of binary alloys. The free energy

function F is defined as

F ¼
Z

V

fdV ¼
Z

V

ð f int f þ f bulkÞdV (5)
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Nomenclature

Variables

c overall solute concentration

ci, c�i solute concentration (i = S, L)

D diffusion coefficient

Di diffusion coefficient

gi molar Gibbs free energy

DgC, Dg�C dissipation by interface migration

DgD, Dg�D dissipation by trans-interface

diffusion

F free energy function

F̃ generalized free energy function
˙̃Fout total free energy production outside

the system
˙̃Fin total free energy production inside

the system

f free energy density

f intf interface contribution to f
fbulk bulk contribution to f
fadd additional constraint contribution

to f
hi interpolation function (hS + hL = 1)

JB overall solute diffusion flux

Ji
B, Ji�

B solute diffusion flux

JC crystallization flux

JD trans-interface diffusion flux

JF projection of free energy flux vector

li solute diffusion length

Mc mobility of overall solute diffusion

McS
mobility of solute diffusion in solid

McL
mobility of solute diffusion in liquid

Mf mobility of phase-field propagation

n normal vector of the outer surface

P interface permeability

Q total free energy dissipation

R gas constant

T temperature

t time

V interface velocity

V0 up limit of V
VDI interfacial solute diffusion velocity

Vm partial molar volume

Xk driving forces (k ¼ f; JS
B; JL

B)

V volume of the system

S outer surface of the system

mi
j , mi�

j chemical potential (j = A, B)

mie
j equilibrium chemical potential

m̃ overall solute diffusion potential

m̃i, m̃�i solute diffusion potential

Dmj, Dm�j chemical potential difference

(mS
j � mL

j , mS�
j � mL�

j )

fS(f) phase-field variable of solid

fL phase-field variable of liquid

h interface thickness

sSL interface energy

sF local free energy production

l associated Lagrange multiplier

ci grand potential (gi � m̃ici)

C grand potential function

Superscripts and subscripts

S solid

L liquid

A solvent

B solute

* value at the interface

Figure 1
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Molar Gibbs energy diagram for the isothermal solidification of a binary

alloy system [2,3]. The total Gibbs energy dissipated by the interface for

solidification of one mole liquid is Dg� ¼ c�SDmB þ ð1 � c�SÞDmA. By

translating the tangent of gS at concentration c�S to the point of gL at

concentration c�L, Dg* is divided into the dissipations by interface

migration Dg�C ¼ c�LDm�B þ ð1 � c�LÞDm�A and trans-interface diffusion

ðDg�D ¼ ðc�L � c�SÞðDm�A � Dm�BÞÞ.
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