
Data in Brief 5 (2015) 107-113

Contents lists available at ScienceDirect

Data in Brief

Baoyu Zhao ^{a,e}, Sonu Gandhi ^b, Cai Yuan ^{a,e}, Zhipu Luo ^{a,e}, Rui Li ^{a,d}, Henrik Gårdsvoll ^{c,d,e}, Valentina de Lorenzi ^b, Nicolai Sidenius ^b, Mingdong Huang ^{a,e,*}, Michael Ploug ^{c,d,e,**}

^a State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China

^b FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy

^c Finsen Laboratory, Rigshospitalet, Copenhagen Biocenter, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark

^d Biotech Research and Innovation Centre (BRIC), Copenhagen Biocenter, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark

^e Danish-Chinese Centre for Proteases and Cancer

ARTICLE INFO

Article history: Received 14 July 2015 Received in revised form 14 August 2015 Accepted 25 August 2015 Available online 4 September 2015

Keywords: uPAR CD87 Epitope mapped antibodies SPR Allostery Hot spots Vitronectin Cancer invasion

ABSTRACT

The urokinase-type plasminogen activator receptor (uPAR or CD87) is a glycolipid-anchored membrane protein often expressed in the microenvironment of invasive solid cancers and high levels are generally associated with poor patient prognosis (Kriegbaum et al., 2011 [1]). uPAR is organized as a dynamic modular protein structure composed of three homologous Ly6/uPAR domains (LU). This internally flexible protein structure of uPAR enables an allosteric regulation of the interactions with its two principal ligands: the serine protease urokinase-type plasminogen activator (uPA) and the provisional matrix protein vitronectin (Vn) (Mertens et al., 2012; Gårdsvoll et al., 2011; Madsen et al., 2007 [2–4]). The biologically relevant uPAR-conformations by a novel class of monoclonal antibodies (Zhao et al., 2015 [5]) and to the general mapping of the topographic epitope landscape on uPAR. The

http://dx.doi.org/10.1016/j.dib.2015.08.027

2352-3409/© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

^{*} Corresponding author at: State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.

^{**} Corresponding author at: Finsen Laboratory, Rigshospitalet, Copenhagen Biocenter, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark.

E-mail addresses: mhuang@fjirsm.ac.cn (M. Huang), m-ploug@finsenlab.dk (M. Ploug).

methods required to achieve these data include: (1) recombinant expression and purification of a uPAR-hybrid protein trapped in the desired conformation [patent; WO 2013/020898 A12013]; (2) developing monoclonal antibodies with unique specificities using this protein as antigen; (3) mapping the functional epitope on uPAR for these mAbs by surface plasmon resonance with a complete library of purified single-site uPAR mutants (Zhao et al., 2015; Gårdsvoll et al., 2006 [5,6]); and finally (4) solving the threedimensional structures for one of these mAbs by X-ray crystallography alone and in complex with uPAR [deposited in the PDB database as 4QTH and 4QTI, respectively].

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Specifications table

Subject area More specific sub- ject area	Protein structure and biochemistry Trapping a flexible protein structure in a defined conformation by mAbs
Type of data	X-ray crystal structures, surface plasmon resonance studies (SPR), and gen- eration of mAbs with defined reactivity
How data was acquired	X-ray diffraction data were collected at Shanghai Synchrotron Radiation Facility
	SPR data was recorded on a CM5 chip with a Biacore3000™ (GE Healthcare Life Sciences)
Data format	Processed
Experimental factors	Recombinant proteins and monoclonal antibodies were affinity purified to high homogeneity before use.
Experimental features	Kinetic rate constants for the interaction between immobilized anti-uPAR mAbs and recombinant uPAR mutants were determined by SPR, the structure of the mAb uPAR complex was determined by X-ray crystallography
Data source location	Not applicable
Data accessibility	The data is available from the related publication by Zhao et al. (http://www.ncbi.nlm.nih.gov/pubmed/25659907), from the patent (WO 2013/020898 A12013) and the structures deposited in the Protein Data Bank (entries 4QTH and 4QTI).

Value of the data

- Defines the structure of a closed, active conformation of native uPAR^{wt} without covalent modifications;
- defines a topographic epitope landscape on uPAR for 6 different bins of anti-uPAR mAbs;
- establish that occupancy of the Vn-binding site by mAbs drives uPAR into to its closed conformation;
- data defining this interdomain flexibility are important for functional studies on uPAR biology;
- and for the future design of uPAR-targeted intervention studies in human disease [1,7-9].

Download English Version:

https://daneshyari.com/en/article/174869

Download Persian Version:

https://daneshyari.com/article/174869

Daneshyari.com