Data in Brief 5 (2015) 537-541

Contents lists available at ScienceDirect

Data in Brief

Data Article

Diffusion coefficients and dissociation constants of enhanced green fluorescent protein binding to free standing membranes

Franziska A. Thomas^a, Ilaria Visco^a, Zdeněk Petrášek^{a,b}, Fabian Heinemann^{a,c}, Petra Schwille^{a,*}

^a Max Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany ^b Graz University of Technology, Institute of Biotechnology and Biochemical Engineering, Petersgasse

10-12/I. A-8010 Graz. Austria

^c Roche Diagnostics, Nonnenwald 2, D-82377 Penzberg, Germany

ARTICLE INFO

Article history: Received 3 September 2015 Received in revised form 29 September 2015 Accepted 1 October 2015 Available online 26 October 2015

ABSTRACT

Recently, a new and versatile assay to determine the partitioning coefficient K_P as a measure for the affinity of peripheral membrane proteins for lipid bilayers was presented in the research article entitled, "Introducing a fluorescence-based standard to quantify protein partitioning into membranes" [1]. Here, the well-characterized binding of hexahistidine-tag (His₆) to NTA(Ni) was utilized. Complementarily, this data article reports the average diffusion coefficient D of His₆-tagged enhanced green fluorescent protein (eGFP-His₆) and the fluorescent lipid analog ATTO-647N-DOPE in giant unilamellar vesicles (GUVs) containing different amounts of NTA(Ni) lipids. In addition, dissociation constants K_d of the NTA(Ni)/eGFP-His₆ system are reported. Further, a conversion between K_d and K_P is provided.

article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.dib.2015.10.002

2352-3409/© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

DOI of original article: http://dx.doi.org/10.1016/j.bbamem.2015.09.001

^{*} Corresponding author. Tel.: +49 89 8578 2900; fax: +49 89 8578 2903.

E-mail address: schwille@biochem.mpg.de (P. Schwille).

Subject area	Biophysics
More specific sub- ject area	Molecular Biophysics
Type of data	Table, figure
How data was acquired	Fluorescence Correlation Spectroscopy, Confocal Microscopy using a LSM 780 with a ConfoCor 3 unit (Zeiss, Jena, Germany)
Data format	Analyzed
Experimental factors	GUVs consisting of DOPC and 2, 3, 4 or 5 mol% DGS-NTA(Ni), labeled with 0.05 mol% ATTO-647N-DOPE
Experimental features	Titration of eGFP-His ₆ to the GUVs
Data source location	Max Planck Institute of Biochemistry, Martinsried, Germany
Data accessibility	The data are provided within this article

Specifications table

Value of the data

- We provide the first valuable characterization of the eGFP-His₆/NTA(Ni) system with precise dissociation constants *K*_d for increasing percentages of DGS-NTA(Ni) in the membrane.
- The eGFP-His₆/NTA(Ni) dissociation constants could serve as reference for other His₆-tagged proteins reconstituted in GUVs.
- We provide a conversion between K_d and K_P for the His₆-NTA(Ni) system, which can be extended to any protein-lipid interaction with a known 1:1 stoichiometry.
- Protein diffusion coefficients could be used as an indicator of crowding effects.
- As for DOPC/DGS-NTA(Ni) the lipid dynamics is independent of increasing protein concentrations, the ATTO-647N-DOPE diffusion coefficient could serve as a standard.

1. Data

Hexahistidine-tag (His₆) binding to Nickel (Ni) chelated with nitrilotriacetic acid (NTA) is a wellcharacterized process [2,3] and it is extensively used to reconstitute protein systems in giant unilamellar vesicles (GUVs) [4–6]. We made GUVs consisting of 1,2-di-(9*Z*-octadecenoyl)-*sn*-glycero-3phosphocholin (DOPC) and 2, 3, 4 or 5 mol% 1,2-di-(9*Z*-octadecenoyl)-*sn*-glycero-3-[(*N*-(5-amino-1carboxypentyl)iminodiacetic acid)succinyl] nickel salt (DGS-NTA(Ni)), labeled with 0.05 mol% ATTO-647N-DOPE. These GUVs were incubated with increasing amounts of His₆-tagged enhanced green fluorescent protein (eGFP-His₆) and point fluorescence correlation spectroscopy (FCS) was performed both at the top pole of the GUVs and in solution. From the obtained FCS auto-correlation functions the diffusion coefficient *D* of both eGFP-His₆ and ATTO-647N-DOPE as well as the dissociation constant K_d of the NTA(Ni)/eGFP-His₆ system were calculated.

Table	1
Table	

Diffusion coefficient D determined by GUV-FCS assay. Calculated diffusion coefficients by averaging all data points for increasing amounts of DGS-NTA(Ni) via the GUV method (mean \pm combined s.e.m.).

DGS-NTA(Ni)	eGFP-His ₆ D in μ m ² /s	ATTO-647N-DOPE D in $\mu m^2/s$
2% 3% 4% 5%	$\begin{array}{rrrr} 4.36 \ \pm \ 1.12 \ (n\!=\!548) \\ 3.20 \ \pm \ 0.75 \ (n\!=\!775) \\ 3.14 \ \pm \ 0.94 \ (n\!=\!740) \\ 1.90 \ \pm \ 1.01 \ (n\!=\!593) \end{array}$	$\begin{array}{rrrr} 10.03 \ \pm \ 0.68 \ (n\!=\!549) \\ 9.74 \ \pm \ 0.66 \ (n\!=\!900) \\ 9.67 \ \pm \ 0.76 \ (n\!=\!969) \\ 9.72 \ \pm \ 0.52 \ (n\!=\!705) \end{array}$

Download English Version:

https://daneshyari.com/en/article/174904

Download Persian Version:

https://daneshyari.com/article/174904

Daneshyari.com