

Contents lists available at ScienceDirect

Data in Brief

journal homepage: www.elsevier.com/locate/dib

Data article

# Influence of a family 29 carbohydrate binding module on the recombinant production of galactose oxidase in *Pichia pastoris*



### Filip Mollerup<sup>a,\*</sup>, Emma Master<sup>a,b</sup>

<sup>a</sup> Department of Biotechnology and Chemical Technology, Aalto University, 00076 Aalto, Finland <sup>b</sup> Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario, Canada M5S 3E5

#### ARTICLE INFO

*Article history:* Received 27 October 2015 Accepted 10 November 2015 Available online 26 November 2015

Keywords: Galactose oxidase Carbohydrate binding modules CBM29 Fermentation Protein production Protein purification Enzyme fusion

#### ABSTRACT

Herein, we report the extracellular expression of carbohydrate active fusion enzymes in Pichia pastoris. Particularly, CBM29-1-2 from Piromyces equi was separately fused to the N- and C-terminus of galactose 6-oxidase (GaO, D-galactose: oxygen 6-oxidoreductase, EC 1.1.13.9, CAZy family AA5) from Fusarium graminearum, generating CBM29-GaO and GaO-CBM29, respectively. P. pastoris was transformed with expression vectors encoding GaO, CBM29-GaO and GaO-CBM29, and the fusion proteins were expressed in both shake-flask and 2L bioreactor systems. Volumetric production yields and specific GaO activity increased when expression was performed in a bioreactor system compared to shake-flask cultivation. This was observed for both CBM29-GaO and GaO-CBM29, and is consistent with previous reports of GaO expression in P. pastoris (Spadiut et al., 2010; Anasontzis et al., 2014) [1,2]. Fusion of CBM29 to the C-terminal of GaO (GaO-CBM29) resulted in a stable uniform protein at the expected calculated size (107 kDa) when analyzed with SDS-PAGE. By comparison, the expression of the N-terminal fusion protein (CBM29-GaO) was low, and two truncated versions of CBM29-GaO were coexpressed with the full-sized protein. Despite differences in

DOI of original article: http://dx.doi.org/10.1016/j.bbagen.2015.10.023

\* Corresponding author.

http://dx.doi.org/10.1016/j.dib.2015.11.032

2352-3409/© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

E-mail address: filip.mollerup@aalto.fi (F. Mollerup).

protein yield, the specific GaO activity on galactose was not affected by CBM29 fusion to either the N- or C-terminus of the enzyme. A detailed description of the catalytic and physiochemical properties of CBM29-GaO and GaO-CBM29 is available in the parent publication (Mollerup et al., 2015) [3].

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

#### **Specifications Table**

| Subject area<br>More specific sub-<br>ject area | Biochemistry and Recombinant Protein Production<br>Recombinant protein expression of fusion proteins in Pichia Pastoris                                                             |
|-------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Type of data                                    | Tables and Figures                                                                                                                                                                  |
| How data was<br>acquired                        | Through analysis of data from recombinant protein expression                                                                                                                        |
| Data format                                     | Data is analysed and presented in text                                                                                                                                              |
| Experimental factors                            | Recominant expression and purification of fusion proteins constructed by separately appending a family 29 carbohydrate binding module to the N- and C-terminus of galactose oxidase |
| Experimental<br>features                        | Protein expression in shake-flasks and bioreactor systems and chromatographic methods to purify target proteins from cell culture supernatants                                      |
| Data source<br>location                         | Not applicable                                                                                                                                                                      |
| Data accessibility                              | Data is accessible in this article and upon request to the authors                                                                                                                  |

#### Value of the data

- 1. These results represent the first production and purification study of galactose oxidase fusions to non-native carbohydrate binding modules, and investigates the impact of CBM positioning on protein recovery.
- 2. To our knowledge, these expression data present the most active preparation of GaO purified from a *P. pastoris* expression host, and simultaneously demonstrate the advantages of using a bioreactor over shake-flask cultivations.
- 3. Observation of truncated forms of CBM29-GaO, which co-expressed with the full-sized protein. All versions bound efficiently to a Ni-NTA column through a C-terminal His6-tag.
- 4. Isolation of full-sized CBM29-GaO from its truncated versions by ion-exchange chromatography utilizing slight differences in calculated pl values.

#### 1. Data, experimental design, materials and methods

#### 1.1. Expression of GaO constructs in shake-flasks

The expression vector, fusion protein sequences, and transformation method are reported in Mollerup et al. [3]. *Pichia pastoris* transformants encoding CBM29-GaO or GaO-CBM29 for extracellular expression were grown overnight in 300 mL buffered minimal glycerol medium (BMGY (w/v): 1% yeast extract, 2% peptone, 100 mM potassium phosphate buffer (pH 6.0), 1.34% YNB,  $4 \times 10^{-5\%}$ biotin, 1% glycerol) at 30 °C with continuous shaking at 250 rpm. Cells were harvested by centrifugation (1500g) at room temperature and suspended in buffered minimal methanol medDownload English Version:

## https://daneshyari.com/en/article/174972

Download Persian Version:

https://daneshyari.com/article/174972

Daneshyari.com