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review then builds on these aspects and compares various solar thermochemical processes. Solar upgrading of
carbon feed has been demonstrated on pilot scale. It is observed that for the thermochemical cycles, only iron

Available online 11 November 2015 and ceria based redox pair have been demonstrated on pilot scale. For industrial applications, solar thermo-
chemical production of zinc, upgrading of landfill gas and organic waste have been demonstrated on pilot scale.

Keywords: However, long term performance data of these pilot plants is not reported in literature.

Solar thermochemical Thermodynamic comparison reveals that the processes involving upgrading of carbon feed have energy

Solar fuels and exergy efficiency at 50-90% and 46-48% respectively. Multistep thermochemical cycles operating at 900-

Solar energy

Solar hydrogen

Solar review
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1200 K have energy efficiency of 34-38%. Metal oxide redox pair based thermochemical cycles operating at
1900-2300 K have energy and exergy efficiencies of 12-32% and 20-36% respectively. Methane reforming and
lime production processes have chemical efficiencies of 55% and 35% respectively and have demonstrated
better performance than other solar thermochemical processes. A few processes like solar gasification of solid
carbon feed have demonstrated lower chemical efficiency of around 10% even at pilot scale. The hydrogen
production cost for solar upgrading of fossil fuels is estimated at 3.21-6.10$/kg and is lower than thermo-
chemical cycles at 7.17-19.26$/kg and CSP driven electrolysis at 3.15-10.23$/kg. It is observed that there is
limited actual data and significant uncertainty in cost. Under these circumstances, it is recommended that
initial screening of processes be done by net energy, material and life cycle analysis.
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1. Introduction

Conventional industrial processes depend on hydrocarbon
resources for producing fuels like hydrogen/syngas and com-
modities like metals, lime etc. These industrial processes are
highly energy and carbon intensive. The issues of fossil fuel
depletion and climate change have resulted in development of
solar industrial process solutions. Concentrated solar technology
offers the option of converting solar energy into thermal, electrical
and chemical forms. While conventionally concentrated solar
energy is used for process heat and power generation applications,
using it to drive chemical reactions is interesting. Processes that
make use of solar heat to drive high temperature endothermic
chemical reactions are known as solar thermochemical processes.

Fig. 1 shows the trend in publications on solar thermochemical
processes from 1974 to 2014. The results are obtained from Scopus.
After the 1973 oil crisis, efforts were directed to shift from
hydrocarbon to a hydrogen economy. In this context, research on
thermochemical splitting of water for hydrogen production was
initiated. High oil prices and the threat of oil embargo, ensured
that focused research on solar thermochemical processes kept
momentum for about a decade. With the stabilization of the oil

market, there were very few publications for next one and half
decade. With emphasis on climate change, interest in solar ther-
mochemical processing was again renewed in mid-2000 and the
total number of publications have been increasing.

1.1. Solar systems for high temperature thermochemical research

From a research perspective, solar thermochemical processes
are first demonstrated in an indoor environment to understand
the process dynamics and reactor performance. This is achieved by
use of a high flux solar simulator (HFSS) [1,2]. Fig. 2 shown the
picture of a HFSS facility at German Aerospace Center (DLR), Ger-
many [3]. HFSS provides an artifical source of concentrated solar
energy where the spectral distribution can be matched with that
of sun. In this arrangement, xenon or argon lamps are placed at
focal point of a highly reflective ellipsoid reflector and deliver
concentrated radiant energy on the target. The HFSS facility is
housed at many solar thermochemical research centres across the
world viz. ETH and PSI (Switzerland), DLR (Germany), University of
Minnesota (USA) etc. The HFSS facility at PSI, Switzerland consists
of an array of ten electrically heated xenon arc lamps that can
provide upto 50 kW of radiative power on the target, with average
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