Data in Brief 6 (2016) 419-422

Contents lists available at ScienceDirect

Data in Brief

journal homepage: www.elsevier.com/locate/dib

Data article

Data on Na,K-ATPase in primary cultures of renal proximal tubule cells treated with catecholamines

Mary Taub*, Facundo Cutuli

Biochemistry Department, University at Buffalo, 140 Farber Hall, 3435 Main Street, Buffalo, NY 14214, USA

ARTICLE INFO

Article history: Received 5 November 2015 Received in revised form 1 December 2015 Accepted 7 December 2015 Available online 25 December 2015

Keywords: Catecholamines Kidney Proximal tubule Na,K-ATPase Chronic

ABSTRACT

This data article is concerned with chronic regulation of Na,K-ATPase by catecholamines. After a chronic treatment, inhibition of Na,K-ATPase activity was observed in cultures with dopamine, while a stimulation was observed in cultures treated with norepinephrine. Following a chronic incubation with guanabenz, an α adrenergic agonist, an increase in Na,K-ATPase α and β subunit mRNAs was observed. This data supports the research article entitled, "Renal proximal tubule Na, K-ATPase is controlled by CREB regulated transcriptional coactivators as well as salt inducible kinase 1" (Taub et al. 2015) [1].

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Specifications Table

Subject areaBiologyMore specific sub-
ject areaRenal transport regulationType of dataFigureHow data was
acquiredReal-Time PCR on a Biorad Cycler, ⁸⁶Rubidium uptake studies

DOI of original article: http://dx.doi.org/10.1016/j.cellsig.2015.09.015

* Corresponding author.

http://dx.doi.org/10.1016/j.dib.2015.12.013

E-mail address: biochtau@buffalo.edu (M. Taub).

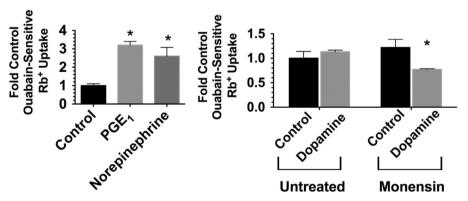
^{2352-3409/© 2015} The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Data format	Analvzed
	5
Experimental	Primary cultures of rabbit kidney proximal tubule cells treated with cate-
factors	cholamines and control
Experimental	Rb ⁺ uptake into intact cells was examined in triplicate, and standardized
features	with respect to protein, to calculate <i>n</i> moles of Rb ⁺ uptake per mg protein; in
	Real-Time PCR, Ct values of Na,K-ATPase and GAPDH mRNAs were obtained
	from quadruplicate determinations, and used to calculate the relative
	increase in Na,K-ATPase in catecholamine treated and control cells.
Data source location	All analyses and experiments were performed in Buffalo, New York, USA
Data accessibility	Data is with this article

M. Taub, F. Cutuli / Data in Brief 6 (2016) 419-422

Value of the data

- This data will have an impact on therapies using catecholamines for blood pressure regulation.
- The data can be compared with other studies of transcriptional regulation of the genes encoding for each of these subunits.


1. Data

The data shown in this report measures changes both in Na,K-ATPase activity and Na,K-ATPase mRNA levels following a chronic incubation of renal proximal tubule cells with catecholamines.

2. Experimental design, materials and methods

2.1. Rubidium uptake studies

Primary cultures of rabbit kidney proximal tubule cells, were prepared as described previously [1,2]. Rabbits employed to obtain the primary cultures were used by procedures approved by the University at Buffalo Institutional Animal Care and Use Committee. The primary cultures were grown

Fig. 1. The effect of PGE₁, norepinephrine and dopamine on transport. A. Primary RPT cells were incubated 30 min with either 280 nM PGE₁, 1 μ M norepinephrine or untreated (and +/-ouabain), followed by a 20 min uptake period with 1 mM ⁸⁶Rb⁺. Uptake values are averages (+/-SEM) of ouabain-sensitive Rb⁺ uptake relative to the untreated control. The ouabain-sensitive component of Rb⁺ uptake was calculated by subtracting the Rb⁺ uptake observed in the presence of ouabain from total Rb⁺ uptake. The results were divided by the untreated control value. B. Primary RPT cells were incubated 30 min with either 10 μ M dopamine +/-5 μ M monensin, or untreated (+/-5 μ M monensin). Uptake studies were conducted both in the presence and in the absence of 1 mM ouabain for each of the 4 conditions, followed by a 20 min uptake period with 1 mM ⁸⁶Rb⁺. The ouabain-sensitive component of Rb⁺ uptake was determined as described in part A. **p* < 0.05 relative to untreated Control.

Download English Version:

https://daneshyari.com/en/article/174991

Download Persian Version:

https://daneshyari.com/article/174991

Daneshyari.com