Contents lists available at SciVerse ScienceDirect

Renewable and Sustainable Energy Reviews

© 2012 Elsevier Ltd. All rights reserved.

journal homepage: www.elsevier.com/locate/rser

This paper presents a literature review of the optimization of absorption refrigeration systems based on

finite-time thermodynamics. An overview of the various objective functions is presented.

Finite-time thermodynamics optimization of absorption refrigeration systems: A review

Paiguy Armand Ngouateu Wouagfack^{a,*}, Réné Tchinda^b

^a L2MSP, Department of Physics, University of Dschang, PO Box 67 Dschang, Cameroon
 ^b LISIE, University Institute of Technology Fotso Victor, University of Dschang, PO Box 134 Bandjoun, Cameroon

ARTICLE INFO

ABSTRACT

Article history: Received 18 June 2012 Received in revised form 14 December 2012 Accepted 16 December 2012 Available online 9 February 2013

Keywords: Finite-time thermodynamics Optimization Endoreversible Irreversible Absorption refrigerator

Contents

1.	Introduction	524
2.	Optimization based on the coefficient of performance and cooling load criteria	525
	2.1. Three-heat-source absorption refrigerator	525
	2.2. Four-heat-source absorption refrigerator	530
	2.3. Solar absorption refrigeration	531
3.	Optimization based on the thermo-economic criterion	532
4.	Optimization based on the ecological criterion	533
5.	Optimization based on the new thermo-ecological criterion	534
6.	Conclusion	534
Ref	erences	535

1. Introduction

The absorption refrigeration systems are thermodynamic processes which produce cold thanks to thermal energy. Then, they exchange heat with at least three sources at different temperatures without receiving work. A three-heat-source reversible refrigerator operates between heat hot reservoir, heat cold reservoir and heat sink. When T_H , T_L and T_O denote the temperatures of heat hot reservoir, heat cold reservoir and heat sink respectively, the coefficient of performance for three-heat-source reversible refrigerators is expressed as: $\varepsilon_r = [(T_H - T_O)/T_H][T_L/(T_O - T_L)]$ [1]. This expression reveals the product of thermal efficiency of Carnot cycle for heat engines working between T_H and T_O and coefficient of performance of reversible Carnot refrigerator producing cold at T_L and rejecting heat at $T_O: \varepsilon_r = \eta_C \times \varepsilon_C$ with $\eta_C = (T_H - T_O)/T_H$ and $\varepsilon_C = T_L/T_O - T_L$. In classical thermodynamics, the efficiency of a cycle operating on reversibility principles proposed by Carnot [2] became the upper bound of thermal efficiency for heat engines that work between the same temperature limits. This equally applies to the coefficient of performance of refrigerator). This implies that the coefficient of performance defined above is the maximum coefficient of performance for three-heat-source refrigerators from the point of view of classical thermodynamics.

^{*} Corresponding author. Tel.: +237 77 18 58 71.

E-mail address: ngouateupaiguy@yahoo.fr (P.A. Ngouateu Wouagfack).

^{1364-0321/\$ -} see front matter @ 2012 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.rser.2012.12.015

Nomenclature

transfer are fer area of a fer area of c fer area of g coefficient o reversibility coefficient (\ nductance o nductance o nductance o urrency unit	absorbe condense evapora generation of perfor param W K) of heat of coole of heat	er (m ²) ser (m ² ator (m ² cor (m ²) ormance neter c source ed spac	²) e (W K ⁻¹)			T_{env} T_{H} T_{L} T_{O} U_{H} U_{L} U_{O}
fer area of c fer area of e fer area of g coefficient c reversibility coefficient (\ nductance c nductance c	condens evapora generat of perfo y param W K) of heat of coold of heat	ser (m ² ator (m ² or (m ²) ormance neter c source ed spac	²) e (W K ⁻¹)			$T_L T_O U_H U_L$
fer area of e fer area of g coefficient o reversibility coefficient (\ nductance o nductance o	evapora generat of perfo param W K) of heat of coold of heat	ator (m ² cor (m ²) ormance neter c source ed spac	²) e (W K ⁻¹)			T _O U _H U _L
fer area of g coefficient o reversibility coefficient (\ nductance o nductance o nductance o	generat of perfo param W K) of heat of coole of heat	or (m ²) ormance neter c source ed spac	e (W K ⁻¹)			U_H U_L
coefficient of reversibility coefficient (\ nductance of nductance of nductance of	of perfo y param W K) of heat of coole of heat	ormance neter source ed spac	e (W K ⁻¹)			UL
eversibility coefficient (\ nductance o nductance o nductance o	y param W K) of heat of coole of heat	neter source ed spac	$(W K^{-1})$			2
eversibility coefficient (\ nductance o nductance o nductance o	y param W K) of heat of coole of heat	neter source ed spac	$(W K^{-1})$			2
oefficient (V nductance o nductance o nductance o	W K) of heat of coole of heat	source ed spac				U ₀
nductance of nduct	of heat of coole of heat	ed spac				Uo
nductance onductance o	of coole of heat	ed spac				
nductance of	of heat		a (W V - 1)			
)		Ŵ
irrency unit		: sink (V	$V K^{-1}$)			
	t					Syml
heat reject load from absorber to heat sink (W)						
heat reject load from condenser to heat sink (W)					3	
					ЕC	
load from h	heat so	ource to	generato	r (V	V)	
						$\eta_{\rm C}$
d (W)						λ
rate at	maxi	mum	coefficie	ent	of	σ
ce (W)						ε _I
oling load (V	$W m^{-2}$	²)				
specific cooling rate at maximum coefficient of per-					εr	
$W m^{-2}$)						-
re of workir	ng fluid	d in gen	erator (K)		\mathcal{E}_m
re of workir	ng fluid	d in eva	porator (I	K)		
re of wor	king f	fluid in	n absorb	er	and	Subs
(K)						5455
re of wor	king f	fluid in	n absorb	er	and	max
(K)						IIIdX
	load from load from load from load from d (W) rate at ce (W) oling load (oling rate a (W m ⁻²) re of worki re of worki re of worki (K)	: load from conder load from cooled load from heat so ad (W) rate at maxi ce (W) oling load (W m ⁻¹ oling rate at max (W m ⁻²) re of working fluid re of working fluid re of working (K) re of working	c load from absorber to he c load from condenser to he load from cooled space to load from heat source to ad (W) rate at maximum ce (W) oling load (W m ⁻²) oling rate at maximum c (W m ⁻²) re of working fluid in gen re of working fluid in eva re of working fluid in eva (K) re of working fluid in	I load from absorber to heat sink (V I load from condenser to heat sink (V I load from cooled space to evaporate load from heat source to generator ad (W) rate at maximum coefficient (W) oling load (W m ⁻²) oling rate at maximum coefficient (W m ⁻²) re of working fluid in generator (K re of working fluid in evaporator (C re of working fluid in absorb (K) re of working fluid in absorb	load from absorber to heat sink (W) load from condenser to heat sink (W) load from cooled space to evaporator load from heat source to generator (W d (W) rate at maximum coefficient ce (W) oling load (W m ⁻²) oling rate at maximum coefficient of $(W m^{-2})$ re of working fluid in generator (K) re of working fluid in evaporator (K) re of working fluid in absorber (K) re of working fluid in absorber	I load from absorber to heat sink (W) I load from condenser to heat sink (W) I load from cooled space to evaporator (W) I load from heat source to generator (W) ad (W) rate at maximum coefficient of ce (W) oling load (W m ⁻²) oling rate at maximum coefficient of per- (W m ⁻²) re of working fluid in generator (K) re of working fluid in evaporator (K) re of working fluid in absorber and (K) re of working fluid in absorber and

 T_A temperature of the absorber-side heat sink (K)

 T_{c} temperature of the condenser-side heat sink (K)

temperature in environmental conditions

temperature of the heat source (K)

temperature of the cooled space (K)

 $T_A = T_C$

overall heat-transfer coefficient of generator (WK/ m^2)

overall heat-transfer coefficient of evaporator (W K/ m^2)

overall heat-transfer coefficient of absorber and condenser (W K/m²)

power output (W)

bol

3	coefficient of performance for absorption refrigerators								
<i>Е</i> С	coefficient of performance of reversible Carnot								
	refrigerator								
η_{c}	thermal efficiency of Carnot cycle								
λ	Dissipation coefficient of cooling rate								
σ	Entropy generation rate (W/K)								
ε _I	coefficient of performance for three-heat-source								
	refrigerator affected only by internal irreversibility								
<i>E</i> _r	coefficient of performance for reversible three-heat-								
	source refrigerator								
E _m	coefficient of performance at maximum cooling rate								
Subscripts									
Subscript	5								
max	maximum								

However, since the absorption refrigeration cycles are in direct contact with reservoirs and sink, the heat transfers during the isothermal processes are supposed to be carried out infinitely slowly. Therefore, duration of the processes will be infinitely long and hence it is not possible to obtain a certain amount of cooling load Q_L with heat exchangers having finite heat-transfer areas, i.e. $\dot{Q} = 0$ for $0 < A < \infty$. If we require certain amount of cooling load in an absorption refrigerator executing a reversible cycle, the necessary heat exchanger area would be infinitely large, i.e. $A \rightarrow \infty$ for $\dot{Q} > 0.$

Thus in classical thermodynamics the real absorption refrigerators producing cold with a certain amount of cooling load are compared with the ideal absorption refrigerators developing no cooling load. In other words the performance of an absorption refrigerator of given size (in term of total heat-transfer area) is measured with an ideal absorption refrigerator which would require an infinite total heat-transfer area to produce the same amounts of cooling load. In practice, all absorption refrigeration processes take place in finite-size devices in finite-time; therefore, it is impossible to meet reversibility conditions between the absorption refrigeration system and the surroundings. For this reason, the reversible absorption cycle cannot be considered as a comparison standard for practical absorption refrigeration systems from the view of cooling load on size perspective, although it gives an upper bound for coefficient of performance. The performance bound of classical thermodynamics [3–6] is highly important in theory, but it is usually too rough to predict the coefficient of performance of practical absorption refrigerators. Therefore, it is necessary to establish the bound of finite-time thermodynamics [7].

The finite-time thermodynamics has been first proposed by Chambadal [8] and Novikov [9] independently on1957, then popularized in many works including Curzon and Ahlborn [10], De Vos [11], Sieniutycz et al. [12], Bejan [13–18], Wu [19], Chen [20], Stitou [21,22], Feidt [23,24], Leff and Teeters [25], Blanchard [26], Stitou and Feidt [27], Andresen [28], Sieniutycz and Salamon [29], De Vos [30], Bejan et al. [31], Bejan and Mamut [32], Berry et al. [33], Radcenco [34] and in many review articles including Sieniutycz and Shiner [35], Chen et al. [36], Hoffmann et al. [37] and Durmayaz et al. [38].

The finite-time thermodynamics tends to model the real systems in a way closer to reality and enable to distinguish the irreversibilities due to internal dissipation of the working fluid from those due to finite-rate heat transfer between the system and the external heat reservoirs and heat sink.

The objective of this paper is to review the present state of optimization of absorption refrigeration processes based on finite-time thermodynamics. The different performance optimization criteria are provided and discussed.

2. Optimization based on the coefficient of performance and cooling load criteria

2.1. Three-heat-source absorption refrigerator

An absorption refrigeration system (equivalent to three-heatreservoir refrigeration system) affected by the irreversibility of finite rate heat transfer may be modeled as a combined cycle which consists of an endoreversible heat engine and an endoreversible Download English Version:

https://daneshyari.com/en/article/1750170

Download Persian Version:

https://daneshyari.com/article/1750170

Daneshyari.com