Contents lists available at ScienceDirect

Renewable and Sustainable Energy Reviews

journal homepage: www.elsevier.com/locate/rser

CrossMark

Assessment of the global ocean wind energy resource

Chong wei Zheng^{a,b,c,*}, Jing Pan^b

^a College of Meteorology and Oceanography, People's Liberation Army University of Science & Technology, Nanjing 211101, China

^b National Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics,

Chinese Academy of Sciences, Beijing 100029, China

^c No. 92538 of People's Liberation Army, Dalian 116041, China

ARTICLE INFO

Article history: Received 25 October 2012 Received in revised form 13 December 2013 Accepted 27 January 2014 Available online 4 March 2014

Keywords: Global ocean Wind energy resource CCMP wind field data Wind energy storage Long-term trend Grade classification map

ABSTRACT

Against a background of an environmental and resources crisis, the exploitation of renewable and clean energy can effectively alleviate the energy crisis and contribute to emission reduction and environmental protection, thus promoting sustainable development. This study aims to develop a grade classification map of the global ocean wind energy resource based on CCMP (cross-calibrated, multi-platform) wind field data for the period 1988–2011. We also calculate, for the first time, the total storage and effective storage of wind energy across the global ocean on a $0.25^{\circ} \times 0.25^{\circ}$ grid. An optimistic increasing long-term trend in wind power density was found. In addition, the global ocean wind energy resource was analyzed and regionalized by considering the temporal and spatial distributions of wind power density, wind energy levels, and effective wind speed, as well as through a consideration of wind energy storage and the stability and long-term trends of wind power density. This research fills a gap in our knowledge in this field, and provides a reference point for future scientific research and development into wind energy resources such as wind power generation, water pumping, and wind-heating.

© 2014 Elsevier Ltd. All rights reserved.

Contents

1.	Introd	duction	382	
2.	Wind field data			
3.	Assessment of the global ocean wind-energy resource			
	3.1.	Seasonal characteristics of wind power density	384	
	3.2.	Distribution of energy level occurrence	384	
	3.3.	Occurrence of effective wind speed	385	
	3.4.	Stability of wind power density	386	
		3.4.1. Coefficient of variation	387	
		3.4.2. Monthly variability index	387	
		3.4.3. Seasonal variability index	387	
	3.5.	Storage of wind energy	388	
	3.6.	Long-term trend in wind power density	388	
	3.7.	Classification of global ocean wind energy resource	388	
4.	Conclu	Conclusions		
Acknowledgments				
References				

1. Introduction

* Corresponding author at: Meteorological station, No. 1 Chaohai Street, Lvshunkou District of Dalian City, Dalian 116041, China. Tel.: +86 18640814027; fax: +86 041185883108.

E-mail address: chinaoceanzcw@sina.cn (C.w. Zheng).

Against a background of an environmental and resources crisis, the ongoing development of clean energy sources seems increasingly inevitable if we are to deal with climate change and the

Nomenclature	MAM March, April, and May M_{ν} monthly variability index PO DAAC Physical Occapage approximately Distributed Active
ADEOS-II advanced earth observing satellite, 2nd generationAMSR-Eadvanced microwave scanning radiometer-earth observing systemCCMPCross-calibrated, multi-platform C_{ν} coefficient of variationDOEDepartment of Energy of the United StatesECMWFEuropean Centre for Medium-Range Weather ForecastsECOPECMWF operational	 PO.DAAC Physical Oceanography Distributed Active Archive Center RSS remote sensing systems SSM/I special sensor microwave imager S_v seasonal variability index TC-114 Technical Committee 114 TMI tropical rainfall measuring mission microwave imager VAM variational analysis method WW3 WAVEWATCH-III
ERA-40 40-year ECMWF re-analysis	

energy crisis [1,2]. Currently, the utilization of solar and on-land wind energy is trending towards industrialization, although both are restricted by geographical factors. Despite nuclear power generation being an effective energy source, it is also vulnerable to natural disasters and human error. For example, both the nuclear leakage caused by the tsunami in January 2011 in Japan, and the Chernobyl nuclear disaster caused by operator errors in 1986, resulted in extremely serious consequences. Offshore wind energy offers substantial advantages over land-based turbines, including resource storage and greater stability [3–6]. Electivity generation by wind power is the principal mode of wind energy resource development, but wind power also has wide applications within navigation, water pumping, wind-heating, etc. However, offshore wind power generation can provide the solutions of most practical value and so meet urgent demands associated with problems such as coastal cities with a high demand for electricity. thereby closing the huge energy gap, and can serve remote islands, lighthouses at sea, marine weather buoys, and other power supply scenarios in marine areas. This largely impeded the economic leap of the coastal city and rural island, meanwhile this predicament promises offshore wind power with broad prospects. Consequently, the promise of abundant wind energy has become a particular area of interest for developed countries [7,8].

The distribution of wind energy resource shows significant regional and seasonal differences, and in the large-scale development of wind power, the basic principle is one of 'resource evaluation and planning ahead'. Blanco [9] calculated the onshore and offshore wind energy cost in Europe and pointed out that the local wind resource is by far the most important factor affecting the profitability of wind energy investments. An on-land wind energy distribution map of the United State was drawn up in 1986 using observations from 1000 weather stations [10]. The Risoe National Laboratory in Denmark collected observational data from 220 stations in 12 European countries, and then developed an onland wind-energy distribution map for Europe [11]. Previous researchers have made great contributions to the assessment of the potential of wind energy, but due to the lack of offshore wind data, most previous studies have focused on land, coastal, or local sea sites, rather than the global ocean wind-energy resource. In 1994, Gaudiosi [12] presented the characteristics of offshore windenergy activity for the Mediterranean and other European seas. Emphasis was given to wind resource assessment, technical development, applications, economics, and environment. To promote wind energy in Senegal, Youm et al. [13] analyzed the wind energy potential along its northern coast, using wind data collected over a period of 2 years at five different locations. With an annual mean wind speed of 3.8 m/s, an annual energy of 158 kWh/m² could be extracted. Results show that a potential use of wind energy in these locations is water pumping in rural areas. Karamanis [14] analyzed the wind energy resources on the Ionian-Adriatic coast of southeast Europe and showed that the mean wind-power densities were less than 200 W/m^2 at 10 m height, suggesting the limited suitability of these sites for the usual wind-energy applications. However, these results indicate that wind power plants, even in lower-resource areas, can be competitive in terms of the energy payback period and reducing greenhouse emissions. With the rapid development of ocean observation technology, increasing amounts of satellite wind data have been used to analyze wind-energy resources. In 2008, NASA [15] and Liu et al. [16] contoured global wind-power density in JJA (June, July, and August) and DJF (December, January, and February), using QuikSCAT wind data. They found that the wind power density in the winter hemisphere is significantly higher than that in the summer hemisphere. During JJA, the regions of highest wind power density are located mainly around the Southern Hemisphere westerlies (ca. 1000–1400 W/m²) and the waters surrounding Somalia (ca. 1200 W/m²). During DJF, the areas of highest wind power density are located mainly around the Northern Hemisphere westerlies (ca. $1000-1400 \text{ W/m}^2$). Obviously, the wind power around the Southern Hemisphere westerlies during DJF is less than that during []A.

However, until now, there has been no comprehensive assessment of the distribution of the grade (see Table 1) of global ocean wind energy resources. This study presents a grade classification map of the global ocean wind energy resource based on CCMP (cross-calibrated, multi-platform) wind field data for the period 1988–2011, and also calculates, for the first time, the total storage and effective storage of wind energy across the global ocean (on a $0.25^{\circ} \times 0.25^{\circ}$ grid). Synthetically considering the wind power density, the distribution of wind energy levels and effective wind speeds, the stability and long-term trend of wind power density, and wind energy storage, we were able to analyze and regionalize the global ocean wind energy resource. The aim of this research is to fill the gap in our understanding in this field and provide guidance for future scientific research and development into wind energy resources such as electricity generation, water pumping, and wind-heating. We also hope to make a contribution towards alleviating the energy crisis and promoting sustainable development.

2. Wind field data

The CCMP wind field data are hosted at the Physical Oceanography Distributed Active Archive Center (PO.DAAC) and have been evaluated and utilized extensively by the scientific community [17]. The data are derived through the cross-calibration and assimilation of ocean surface wind data from SSM/I (Special Sensor Microwave Imager), TMI (Tropical Rainfall Measuring Mission Microwave Imager), AMSR-E (Advanced Microwave Scanning Radiometer-Earth Observing System), SeaWinds on QuikSCAT, and SeaWinds on ADEOS-II (Advanced Earth Download English Version:

https://daneshyari.com/en/article/1750290

Download Persian Version:

https://daneshyari.com/article/1750290

Daneshyari.com