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a b s t r a c t

Effective feedback can reduce building power consumption and carbon emissions. Therefore, providing
information to building managers and tenants is the first step in identifying ways to reduce power
consumption. Since reducing anomalous consumption can have a large impact, this study proposes a
novel approach to using large sets of data for a building space to identify anomalous power consumption.
This method identifies anomalies in two stages: consumption prediction and anomaly detection.
Daily real-time consumption is predicted by using a hybrid neural net ARIMA (auto-regressive integrated
moving average) model of daily consumption. Anomalies are then identified by differences between
real and predicted consumption by applying the two-sigma rule. The experimental results for a
17-week study of electricity consumption in a building office space confirm that the method can detect
anomalous values in real time. Another contribution of the study is the development of a formalized
methodology for detecting anomalous patterns in large data sets for real-time of building office space
energy consumption. Moreover, the prediction component can be used to plan electricity usage while
the anomaly detection component can be used to understand the energy consumption behaviors of
tenants.

& 2014 Elsevier Ltd. All rights reserved.
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1. Introduction

The OECD has predicted that global energy consumption will
increase 53% from 505 quadrillion Btu in 2008 to 770 quadrillion
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Btu in 2035 [1]. Compared to the transportation and industrial
sectors, the building sector consumes more energy (approximately
40% of global energy use) and generates 30% more CO2 [2].
Therefore, a critical step in lowering carbon is reducing energy
consumption in buildings. Given the particularly high dependence
of Taiwan on imported fossil fuels, developing an economical, low-
carbon, and highly efficient green energy system is imperative [3].

Studies performed in the United Kingdom [4] and in the United
States [5] show that the growing use of energy-consuming equip-
ment beat efficiency gains in green building technology. The
increased energy consumption is mainly due to equipment for
maintaining comfort in residential and commercial buildings, such
as air conditioners, heaters and other modern appliances [5].
However, energy consumption in commercial buildings is more
complex than that in residential buildings [6].

While residential buildings mainly provide a sanctuary for
people, commercial buildings have widely varying purposes.
Nevertheless, commercial buildings are mainly designed for busi-
ness activities and expected to generate income for building
owners and their tenants. Therefore, energy-saving strategies are
needed to reduce operating costs on both sides. Specifically,
electricity consumption by commercial buildings is the highest
during 9:00–17:00, which is usually the highest price in time-price
based schemes. Moreover, Popescu et al. also found that energy-
efficient buildings benefit owners by increasing the property
values [7].

The building manager is responsible for managing building
performance, and one of the main building performance measures
is electricity consumption [8]. Additionally, in countries that have
recently increased requirements for green building certification,
the building manager must minimize energy consumption. Thus,
to reduce electricity consumption and CO2 emissions, building
managers must understand energy consumption from the tenant
perspective. Therefore, building electricity consumption is both a
social problem and a technical problem [5].

Analyzing electricity consumption from the tenant perspective
requires very detailed data. To acquire such data, researchers have
proposed using sensors for detecting movement [9], thermostats
[10], cameras [11] or combinations of sensors that detect light, CO2,
temperature, etc. [12]. In practice, however, implementing this
approach in commercial buildings is highly impractical. For privacy
reasons, some tenants may reject the idea of sensors installed in their
offices. Moreover, wiring costs are 45% and 75% of total installation
cost for new buildings and retrofitted buildings, respectively [13].
Analyzing data streams from numerous real-time sensors can also be
a heavy burden on building energy managers [14].

Smart meter use can reduce the required number of sensors and
eventually reduces data stream volume. A smart meter is an electrical
meter that records electrical energy consumption at intervals of an
hour or less and sends the information back to the utility center for
monitoring and billing purposes [15]. Therefore, smart meters
provide more information compared to conventional meters, which
only provide data for billing purposes [15]. Moreover, a smart meter
management system is needed for an efficient smart grid system
[16]. Finally, customers benefit from improved reliability of utility
networks [17] and improved responsiveness of services, which
eventually improve and sustain the customer relationship [18].

Additionally, smart meter data can be utilized to provide power
quality (PQ) information to customers and utility companies. As the
quality is susceptible to any disturbance in power transmission
network, PQ is an important measure for customers [19]. Particularly,
for the buildings that use electricity from different companies, the
companies could develop PQ index [20] to provide fair information to
customer and use the index to monitor any disturbance in power
quality production. Consequently, for a fairer energy price, the price
can be adjusted in terms of power quality [21].

Smart meters can provide detailed data for the electricity
consumption of a customer in real-time or near real-time. Further,
in-home implementations combining smart meter and enabling
technologies such as in-home display have shown that smart
meters can reduce energy consumption [22]. Studies show that
the highest reductions occur when people are already at home at
17:00 (5 pm), which indicates that, with the right feedback, people
can reduce their electricity consumption [23]. For example, a study
by the Energy Saving Trust in 2009 showed that feedbacks that
had the largest contribution to smart meter use were those that
helped to reduce electricity use [24].

Anomalous electricity consumption data can help tenants identify
extraordinary consumption patterns [25]. In commercial buildings,
anomalous consumption may also result from activities such as over-
lighting [6], inefficient equipment or overtime work. Therefore,
anomalous feedback data can be further used to warn tenants to
minimize electricity use and to help them identify ineffective equip-
ment or over-lighting in office spaces. However, extracting meaningful
information from smart meter data is a formidable task [26].

Although several anomaly detection methods have been
researched, the primary objective has been detecting anomalous
consumption in automated building systems such as heating,
ventilation, and air conditioning (HVAC) systems [14,26–28].
However, the building must also support random use of office
equipment, lightings, heating, and air condition. Since HVAC
systems consume almost 50% of energy in a building [8], reduction
of energy use by non-HVAC systems can potentially reduce total
consumption by 50%. Office equipment consumes 15% of the total
energy consumed by an office. By 2020, this figure is expected to
increase twofold [29]. Therefore, potential savings in electricity
consumption by office spaces are also large.

Because no studies have considered anomaly detection in office
spaces, this study performed an experiment to develop a real-time
system for detecting anomalous electricity consumption in an
office space from the perspective of occupant activities. All
experimental data were retrieved from smart meters used to
monitor electricity consumption in an office space in a university
building. The main objective was to develop an anomaly detection
methodology that is applicable in large data stream of smart meter
data and real time environment. Therefore, the research results
have potential applications in a web-based early warning system.
Notably, the results application is not only limited to building
energy consumption domain, but also applicable to any anomaly
detection system that use time based sensor data as input.
Furthermore, the potential application includes gas flow detection,
water flow detection, and comfort level detection. The main
contributions of this research are the following:

� A formalized methodology for detecting anomalous patterns in
large real-time datasets for building office space energy
consumption.

� The method is performed in two stages. The prediction stage
helps building managers plan their electricity demand while
the anomaly detection stage helps building managers identify
tenant consumption patterns. In the case of a building that
generates its own electricity and has abnormally low energy
consumption, the building manager can connect to a smart grid
and sell the excess electricity to gain profit.

� Anomaly detection benefits tenants by helping them under-
stand how their office activities consume energy. They can then
modify their anomalous activities, analyze energy consump-
tion costs and benefits, and eventually reduce their wasteful
activities.

The remainder of this paper is organized as follows. Section 2
briefly introduces the study context by reviewing related
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