Data in Brief 4 (2015) 22-31



Contents lists available at ScienceDirect

Data in Brief

journal homepage: www.elsevier.com/locate/dib

Data Article

# ATP4 and ciliation in the neuroectoderm and endoderm of Xenopus embryos and tadpoles



Peter Walentek <sup>a,b,\*</sup>, Cathrin Hagenlocher <sup>a</sup>, Tina Beyer <sup>a,1</sup>, Christina Müller <sup>a</sup>, Kerstin Feistel <sup>a</sup>, Axel Schweickert <sup>a</sup>, Richard M. Harland <sup>b</sup>, Martin Blum <sup>a</sup>

<sup>a</sup> Institute of Zoology, University of Hohenheim, Garbenstrasse 30, 70593 Stuttgart, Germany
<sup>b</sup> Department of Molecular and Cell Biology, Center for Integrative Genomics, University of California at Berkeley, Berkeley, California 94720, USA

## ARTICLE INFO

Article history: Received 27 March 2015 Received in revised form 4 April 2015 Accepted 7 April 2015 Available online 20 April 2015

Keywords: Cilia ATP4a Gastric H+/K+ATPase Wnt signaling Xenopus

# ABSTRACT

During gastrulation and neurulation, foxj1 expression requires ATP4a-dependent Wnt/β-catenin signaling for ciliation of the gastrocoel roof plate (Walentek et al. Cell Rep. 1 (2012) 516–527.) and the mucociliary epidermis (Walentek et al. Dev. Biol. (2015)) of Xenopus laevis embryos. These data suggested that ATP4a and Wnt/β-catenin signaling regulate foxi1 throughout Xenopus development. Here we analyzed whether *foxi1* expression was also ATP4a-dependent in other ciliated tissues of the developing Xenopus embryo and tadpole. We found that in the floor plate of the neural tube ATP4a-dependent canonical Wnt signaling was required for *foxj1* expression, downstream of or in parallel to Hedgehog signaling. In the developing tadpole brain, ATP4function was a prerequisite for the establishment of cerebrospinal fluid flow. Furthermore, we describe foxj1 expression and the presence of multiciliated cells in the developing tadpole gastrointestinal tract. Our work argues for a general requirement of ATP4-dependent Wnt/β-catenin signaling for *foxi1* expression and motile ciliogenesis throughout Xenopus development.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.dib.2015.04.003

2352-3409/© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

DOI of original article: http://dx.doi.org/10.1016/j.ydbio.2015.03.013

<sup>\*</sup> Corresponding author at: Department of Molecular and Cell Biology, Center for Integrative Genomics, University of California at Berkeley, Berkeley, California 94720, USA.

E-mail address: walentek@berkeley.edu (P. Walentek).

<sup>&</sup>lt;sup>1</sup> Current address: Medical Proteome Center, Institute for Ophthalmic Research, University of Tübingen, Nägelestrasse 5, 72074 Tübingen, Germany.

| -                             |                                                                                                                                                                                                                                                                                                  |
|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Subject area                  | Biology                                                                                                                                                                                                                                                                                          |
| More specific subject<br>area | Cell and developmental biology                                                                                                                                                                                                                                                                   |
| Type of data                  | Text file, figures, movies                                                                                                                                                                                                                                                                       |
| How data was<br>acquired      | Microscopy (fluorescent, confocal, bright-field)                                                                                                                                                                                                                                                 |
| Data format                   | Analyzed and annotated figures and movies                                                                                                                                                                                                                                                        |
| Experimental factors          | NA                                                                                                                                                                                                                                                                                               |
| Experimental features         | Xenopus embryos were manipulated by morpholino oligonucleotide-mediated knockdown and<br>application of pharmacological inhibitors. Gene expression, morphology and cilia function were<br>analyzed by in situ hybridization, immunofluorescence, and quantification of extracellular fluid flow |
| Data source location          | NA                                                                                                                                                                                                                                                                                               |
| Data accessibility            | The data described here is presented in this article in form of figures and supplemental movies                                                                                                                                                                                                  |

#### **Specification Table**

#### Value of the data

- Our results indicate that the ATP4/Wnt/β-catenin module is required for neural *foxj1* expression downstream of, or in parallel to, Hedgehog signaling.
- ATP4 function is required for the generation of cerebrospinal fluid flow.
- *atp4a* and *foxj1* are co-expressed in the gastrointestinal tract.
- The tadpole stomach is lined by multiciliated cells, which generate an extracellular fluid flow.

#### 1. Data, experimental design and methods

## 1.1. Analysis of ATP4a/Wnt-dependent foxj1 expression in floor plate of the neural tube

The floor plate and the brain represent additional sites of vertebrate *foxj1* expression [1,5,6,13]. We tested whether floor plate expression of *foxj1* required ATP4 and Wnt/ $\beta$ -catenin signaling in *Xenopus* by injection of 1 pmol/injection of *atp4a* morpholino oligonucleotide (*atp4a*MO) targeted to dorso-medial regions of developing embryos. Embryos were injected at the two- to four-cell stage using a Harvard Apparatus or Picospritzer setup in 1 × modified Barth's solution (MBSH) with 4% Ficoll (BioChemica) and transferred to 0.1 × MBSH 15 min after injection. Gene expression was analyzed by whole mount in situ hybridization (WMISH). *atp4a* morphants showed a reduction of *foxj1* expression in the floor plate (*p* < 0.001; Fig. 1A,C and G), which was rescued by co-injection of 1 ng/µl *β*-catenin DNA (*p* < 0.01; Fig. 1E and G).

#### 1.2. Monitoring floor plate formation in atp4a morphants

Formation of the floor plate in *atp4a* morphants was analyzed histologically and by analysis of gene expression. Embryos were embedded in gelatin–albumin and sectioned on a vibratome (30  $\mu$ m). The floor plate was present, as judged by concentration of pigment due to apical constriction of medial neural plate cells, both in *atp4a* morphants and in specimens co-injected with  $\beta$ -catenin DNA (Fig. 2A–C, A<sup>-</sup>-C<sup>-</sup>). Floor plate-specific *sonic hedgehog* expression (*shh*; [12]) was also present in *atp4a* morphants (Fig. 2D and E).

## 1.3. Analysis of Hedgehog-dependent foxj1 expression in the floor plate of the neural tube

To analyze if *Xenopus foxj1* expression depended on Hedgehog (HH) signaling, as reported for zebrafish *foxj1* [3,20], embryos were incubated with the HH signaling inhibitor cyclopamine

Download English Version:

https://daneshyari.com/en/article/175053

Download Persian Version:

https://daneshyari.com/article/175053

Daneshyari.com