Data in Brief 4 (2015) 468-473

Contents lists available at ScienceDirect

Data in Brief

journal homepage: www.elsevier.com/locate/dib

Data for comparative proteomics analysis of the antitumor effect of CIGB-552 peptide in HT-29 colon adenocarcinoma cells

Teresa Núñez de Villavicencio-Díaz^a, Yassel Ramos Gómez^a, Brizaida Oliva Argüelles^b, Julio R. Fernández Masso^a, Arielis Rodríguez-Ulloa^a, Yiliam Cruz García^c, Osmany Guirola-Cruz^a, Yasset Perez-Riverol^d, Luis Javier González^a, Inés Tiscornia^e, Sabina Victoria^e, Mariela Bollati-Fogolín^e, Vladimir Besada Pérez^a, Maribel Guerra Vallespi^b

^a Department of Systems Biology, Center for Genetic Engineering and Biotechnology, Cuba

^b Pharmaceuticals Department, Center for Genetic Engineering and Biotechnology, Cuba

^c Department of Preclinical Studies, National Institute of Oncology and Radiobiology of Cuba, Cuba

^d European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust

Genome Campus, Hinxton, Cambridge, UK

^e Cell Biology Unit, Institut Pasteur of Montevideo, Uruguay

ARTICLE INFO

Article history: Received 11 June 2015 Received in revised form 23 June 2015 Accepted 24 June 2015 Available online 8 July 2015

Keywords: Colorectal cancer Apoptosis Inflammation CIGB-552 synthetic peptide Enrichment analysis Text mining

ABSTRACT

CIGB-552 is a second generation antitumor peptide that displays potent cytotoxicity in lung and colon cancer cells. The nuclear subproteome of HT-29 colon adenocarcinoma cells treated with CIGB-552 peptide was identified and analyzed [1]. This data article provides supporting evidence for the above analysis.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

DOI of original article: http://dx.doi.org/10.1016/j.jprot.2015.05.024

E-mail address: teresa.nunez@biocomp.cigb.edu.cu (T. Núñez de Villavicencio-Díaz).

http://dx.doi.org/10.1016/j.dib.2015.06.024

^{2352-3409/© 2015} The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Specifications Table

Subject area	Biology
More specific subject area	Pharmacology, Proteomics
Type of data	Figure, table, methods
How data was	Mass spectrometry: hybrid quadrupole orthogonal acceleration tandem mass spectrometer QTof-2
acquired	(Micromass, Manchester, U.K.)
Data format	Analyzed
Experimental factors	Isolation of the Nuclear Proteins Enriched Fraction, trypsin digestion and isotope labeling of peptides
Experimental	Subcellular fractionation, protein and peptide fractionation by DF-PAGE and LC-MS/MS peptide
features	identification
Data source location	Havana, Cuba
Data accessibility	The data are provided in this article.

Value of the data

- The data details the DF-PAGE separation method used in the proteomics analysis of GIGB-552 peptide effect.
- The data details the bioinformatics-driven approach used for the functional classification of the identified and differentially modulated proteins.
- The data provides an overview of the nuclear proteins differentially modulated in HT-29 colon adenocarcinoma cells treated with the antitumor peptide CIGB-552 and their functional classification.

1. Data, experimental design, materials and methods

We performed a comparative proteomics experiment in duplicate focusing on the quantification of the nuclear subproteome of the human HT-29 colon adenocarcinoma cells via a dual-fractionation by polyacrylamide gel electrophoresis (DF-PAGE) approach. The differentially modulated proteins were functionally analyzed using a systems biology workflow that integrates the information obtained from two main groups of bioinformatics tools [1].

2. Dual fractionation by polyacrylamide gel electrophoresis (DF-PAGE)

The DF-PAGE method combines sequentially, protein fractionation by SDS-PAGE, in-gel tryptic digestion and peptide fractionation by SDS-free PAGE [2,3]. In the first fractionation step (SDS-PAGE), proteins are solubilized in a SDS containing solution and separated according to their size. The presence of SDS ensures the solubilization of virtually all the proteins including highly hydrophobic proteins [2]. After the in-gel tryptic digestion, the peptide mixture is transferred to a second SDS-free gel. In the absence of SDS, peptides migrate according to their charge and size which is orthogonal to the peptide separation in RP-C18 during the LC-MS/MS analysis [2]. For quantitative DF-PAGE, isotope labeling of peptides is introduced with normal- or deuterated N-acetoxysuccinimide just before peptide fractionation by SDS-free PAGE. Fig. 1 shows a SDS-PAGE analysis of soluble and nuclear fractions for CIGB-552 peptide treated and control samples of two independent experiments. Fig. 2 represents a schematic representation of the DF-PAGE method [3]. Finally, Fig. 3 shows same data as Fig. 1 but for the nuclear fractions obtained from control and treated samples.

Download English Version:

https://daneshyari.com/en/article/175094

Download Persian Version:

https://daneshyari.com/article/175094

Daneshyari.com