

Contents lists available at ScienceDirect

Data in Brief

Data Article

Data in support of association study of the brain-derived neurotrophic factor gene SNPs and completed suicide in the Slovenian sample

Sandra Ropret^a, Tomaž Zupanc^b, Radovan Komel^{a,*}, Alja Videtič Paska^{a,*}

ARTICLE INFO

Article history:
Received 8 July 2015
Received in revised form
15 July 2015
Accepted 15 July 2015
Available online 22 July 2015

Keywords:
Genotypes
Logistic regression
Inheritance models
Haplotypes
Sliding window procedure

ABSTRACT

This data article provides the data generated from additional analyses of a genetic association study, where 7 single nucleotide polymorphisms (SNPs) near/within the brain-derived neurotrophic factor (BDNF) gene were investigated for an association with completed suicide in Slavic population (Ropret et al., 2015) [1]. One SNP was excluded from the present analyses due to insufficient genotyping rate (rs1491850) and the remaining 6 SNPs (rs7124442, rs10767664, rs962369, rs12273363, rs908867, rs1491851) were analyzed to gain deeper insight into the possible role of these SNPs in the studied phenotype. We present data on logistic regression analyses of: (a) genotypes under four inheritance models, and (b) haplotypes using 2-, 3- and 4adjacent SNPs sliding window procedure. In both analyses adjustments for potential confounders (age, gender and alcohol dependence syndrome status) were executed. Data may serve as a reference for comparison of the populations with either low or very high suicide rates. The raw genotyping data that could be used in case metaanalyses should be performed may be provided upon request.¹

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

^a Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, SI-1000 Ljubljana, Slovenia ^b Institute of Forensic Medicine, Faculty of Medicine, University of Ljubljana, Korytkova ulica 2, SI-1000 Liubliana. Slovenia

DOI of original article: http://dx.doi.org/10.1016/j.neulet.2015.06.027

^{*} Corresponding authors.

E-mail addresses: sandraropret@gmail.com (S. Ropret), tomaz.zupanc@mf.uni-lj.si (T. Zupanc), radovan.komel@mf.uni-lj.si (R. Komel), alja.videtic@mf.uni-lj.si (A. Videtič Paska).

¹ The corresponding author will notify the co-authors of this Data article whenever request for the raw genotyping data file occurs.

Specifications Table

Subject area Biology

More specific subject area Neurobiology of psychiatric disorders, particularly completed suicide

Type of data Tables

How data was acquired Software for genetic analysis PLINK v1.07 [2]

Data format Analyzed

Experimental factors Genotyping of controls and suicide completers [1]

Data source location Ljubljana, Slovenia, EU

Data accessibility All the data are supplied within this article (raw genotyping data may be provided upon request)

Value of the data

 Data presented here may be useful as an incentive for analyses of the SNPs rs7124442, rs10767664, rs962369, rs12273363 and rs908867, especially haplotypes consisting of two to five of these SNPs in larger samples from different populations with high suicide rates and also for comparative analyses of populations with high and low suicide rates.

Table 1Logistic regression analysis of the SNPs in the *BDNF* gene between controls and suicide completers, adjusted by age, gender and alcohol dependence syndrome status.

SNP	Model		OR	95% CI	p ^a
rs7124442	Geno_2df ^b	TT vs. CT vs. CC	N/A	N/A	0.313
	ADD ^c	2 CC + CT vs. TT	1.234	0.939-1.623	0.131
	Dominant ^d	TT $vs.$ CT+CC	1.106	0.821-1.489	0.508
	Recessive ^e	TT + CT vs. CC	1.513	0.887-2.579	1.128
rs10767664	Geno_2df	AA vs. TA vs. TT	N/A	N/A	0.161
	ADD	2 TT+TA $vs.$ AA	1.296	0.954-1.761	0.097
	Dominant	AA $vs. TA + TT$	1.287	0.955-1.736	0.098
	Recessive	AA+TA vs. TT	1.559	0.854-2.847	0.148
rs962369	Geno_2df	TT vs. CT vs. CC	N/A	N/A	0.813
	ADD	2 CC+CT vs. TT	1.039	0.762-1.415	0.811
	Dominant	TT vs. CT+CC	0.940	0.698-1.267	0.686
	Recessive	TT+CT vs. CC	1.113	0.606-2.045	0.730
rs12273363	Geno_2df	TT vs. CT vs. CC	N/A	N/A	0.905
	ADD	2 CC+CT vs. TT	1.085	0.682-1.728	0.730
	Dominant	TT vs. CT+CC	0.977	0.706-1.352	0.889
	Recessive	TT+CT vs. CC	1.191	0.472-3.008	0.711
rs908867	Geno_2df	CC vs. TC vs. TT	N/A	N/A	0.838
	ADD	2 TT+TC vs. CC	0.956	0.464-1.970	0.902
	Dominant	CC vs. $TC+TT$	0.886	0.592-1.324	0.554
	Recessive	CC+TC vs. TT	0.930	0.219-3.949	0.922
rs1491851	Geno 2df	CC vs. TC vs. TT	N/A	N/A	0.623
	ADD	2 TT+TC vs. CC	0.994	0.813-1.216	0.953
	Dominant	CC vs. TC+TT	1.094	0.795-1.504	0.581
	Recessive	CC+TC vs. TT	0.908	0.642-1.284	0.583

OR: odds ratio; CI: confidence interval.

^a p-values are not corrected for multiple testing (Bonferroni); **bold**: major allele homozygotes.

^b Geno_2df (general genotypic model): major allele homozygotes vs. heterozygotes vs. minor allele homozygotes.

^c ADD (additive model, where each copy of the minor allele alters the risk in an additive form; a combination of the minor allele homozygotes with weight 2+heterozygotes is compared to major allele homozygotes): 2× minor allele homozygotes+heterozygotes vs. major allele homozygotes.

^d Dominant: major allele homozygotes vs. heterozygotes+minor allele homozygotes.

^e Recessive: major allele homozygotes+heterozygotes vs. minor allele homozygotes.

Download English Version:

https://daneshyari.com/en/article/175098

Download Persian Version:

https://daneshyari.com/article/175098

<u>Daneshyari.com</u>