Data in Brief 4 (2015) 395-399

Contents lists available at ScienceDirect

Data in Brief

journal homepage: www.elsevier.com/locate/dib

Data Article

Precipitation behavior in a nitride-strengthened martensitic heat resistant steel during hot deformation

Wenfeng Zhang^a, Qingyong Su^a, Mi Xu^a, Wei Yan^{b,*}

^a Guilin University of Aerospace Technology, Guilin 541004, China
^b Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China

ARTICLE INFO

Article history: Received 11 May 2015 Received in revised form 25 June 2015 Accepted 29 June 2015 Available online 7 July 2015

ABSTRACT

The stress relaxation curves for three different hot deformation processes in the temperature range of 750–1000 °C were studied to develop an understanding of the precipitation behavior in a nitridestrengthened martensitic heat resistant steel (Zhang et al., Mater. Sci. Eng. A, 2015) [1]. This data article provides supporting data and detailed information on how to accurately analysis the stress relaxation data. The statistical analysis of the stress peak curves, including the number of peaks, the intensity of the peaks and the integral value of the pumps, was carried out. Meanwhile, the XRD energy spectrum data was also calculated in terms of lattice distortion. © 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

Specifications Table

Subject area More specific subject area	Material science and engineering Microstructure, precipitates
Type of data How data was	Table, image (x-ray, microscopy, curve), opj file Microstructure observation using SEM, TEM, and OM, calculation using XRD, EDAX, Origin software. Raw data gained by Cleable 2500
Data format	Raw stress curves data, and analyzed computational data, and raw.jpg files for microstructure

DOI of original article: http://dx.doi.org/10.1016/j.msea.2015.04.101

* Corresponding author. Tel.: +86 24 83978745.

E-mail address: weiyan@imr.ac.cn (W. Yan).

http://dx.doi.org/10.1016/j.dib.2015.06.018

2352-3409/© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Experimental factors	cast
Experimental	Heated at1200 °C for 5 min then cooled down to a certain temperature then deformed and isothermal
features	holding for a certain time
Data source location	2nd Jinji Road, Qixing District, Guilin, Guangxi, China
Data accessibility	data available in this article

Value of the data

- The methods behind the data presented here for particle precipitation behavior during hot deformation of heat resistant steel might be useful for some other kind of alloy.
- The data presented here may facilitate the improvement of the particle nature steel's final state.
- The microstructure illustrated in this paper may illuminate softening mechanisms taking place as well as insight into microstructure evolution during hot deformation.

Peak Analysis

Fig. 1. The stress wave statistical analysis.

Download English Version:

https://daneshyari.com/en/article/175117

Download Persian Version:

https://daneshyari.com/article/175117

Daneshyari.com