
ELSEVIER

Contents lists available at ScienceDirect

Renewable and Sustainable Energy Reviews

A review on compressed-air energy use and energy savings

R. Saidur ^{a,*}, N.A. Rahim ^b, M. Hasanuzzaman ^a

ARTICLE INFO

Article history: Received 4 November 2009 Accepted 12 November 2009

Keywords: Compressed-air systems Energy savings Economic analysis Emission reduction

ABSTRACT

Compressed-air systems account for about 10% of total industrial-energy use for few selected countries as found in literatures. Compressed air is typically one of the most expensive utilities in an industrial facility. This paper describes a comprehensive literature review about compressed air energy use, savings, and payback period of energy efficient strategies. This paper compiles latest literatures in terms of thesis (MS and PhD), journal articles, conference proceedings, web materials, reports, books, handbooks on compressed air energy use, efficiency, energy savings strategies. Computer tools for compressed air analysis have been reviewed and presented in this paper. Various energy-saving measures, such as use of highly efficient motors, VSD, leak prevention, use of outside intake air, reducing pressure drop, recovering waste heat, use of efficient nozzle, and use of variable displacement compressor to save compressed-air energy have been reviewed. Based on review results, it has been found that for an electric motor used in a compressed-air system, a sizeable amount of electric energy and utility bill can be saved using high efficient motors and applying VSDs in matching speed requirements. Also, significant amounts of energy and emission are reducible through various energy-saving strategies. Payback periods for different energy savings measures have been identified and found to be economically viable in most cases.

© 2009 Elsevier Ltd. All rights reserved.

Contents

1.	Intro	duction		1136
2.	Methodology			1137
	2.1.	Energy audit		1137
		2.1.1.	Energy audit objectives	1138
		2.1.2.	Energy audit process	1138
		2.1.3.	Types of energy audit	1138
		2.1.4.	Tools for energy audit	1138
		2.1.5.	Data needed for a compressed-air energy audit	1139
	2.2.	Energy ι	use of compressed-air systems	1139
	2.3.	Estimati	ng energy savings, payback periods, and emission reductions	1139
		2.3.1.	Energy savings by using a high-efficiency motor	1139
		2.3.2.	Motor's energy savings through variable speed drive (VSD)	1140
		2.3.3.	Energy savings through leak prevention	1141
		2.3.4.	Energy savings using outside intake air	1142
		2.3.5.	Energy savings due to pressure drop	1142
		2.3.6.	Energy savings from heat recovery	1143
		2.3.7.	Energy saving by efficient nozzles	1143
		2.3.8.	Variable displacement compressor operation.	1143
		2.3.9.	Keep the compressor and intercooling surfaces clean	1143
		2.3.10.	Mathematical formulations of payback period.	1144
		2 2 11	Emissions mitigation	1111

^a Department of Mechanical Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia

^b Department of Electrical Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia

Corresponding author. Tel.: +60 3 79674462; fax: +60 3 79675317. E-mail address: saidur@um.edu.my (R. Saidur).

3.	Computer tools for compressed air analysis.		
	3.1. AIRMaster+	1145	
	3.2. AirSim		
4.	Review results and discussions on compressed-air energy savings, payback periods, and associated emission reductions	1145	
5.	Conclusions	1151	
	References	1151	

Nomenclature

AES annual energy savings AEU annual energy usage **ES_{VSD}** energy savings with the application of VSD $H_{\text{avg_usage}}$ Annual average usage hours number of motors P motor power (kW) percentage energy savings associated certain S_{SR} percentage of speed reduction VSD variable speed drive hp motor's rated horsepower load factor (percentage of full load) I hr annual operating hours c average energy cost (US\$/kWh)

 E_{std} standard-motor efficiency rating (%) energy-efficient motor efficiency rating (%) E_{ee} conversion factor from horsepower to kW AES_{cs leak} annual energy savings by preventing leak (MWh) % of energy savings by preventing leak

on-load time (min) T off-load time (min) t

 m^3 V kPa P T minutes

 $W_{\rm R}$ fractional reduction in compressor work $W_{\rm I}$ work of compressor with inside air (kW) $W_{\rm O}$ work of compressor with outside air (kW) $T_{\rm I}$ the average temperature of inside air (°C) the annual average outside air temperature (°C) $T_{\rm O}$ **AES**_{ia} energy savings associated with the usage of outside intake air temperature

 AES_{pd} energy savings due to pressure drop

 FR_i ratio of proposed power consumption to current power consumption

FR the horsepower reduction factor

discharge pressure at proposed operating pressure $P_{\rm dp}$

conditions (kPa)

discharge pressure at current pressure conditions P_{dc} (kPa)

 P_{i} inlet pressure (atmospheric pressure) (kPa) k

ratio of specific heat for air (k = 1.4).

HRF heat recovery factor ca air compressor

 ANS_i annualized net dollar savings in i year of air

compressor

 AS_i applicable stock in year i of air compressor

CRF capital recovery factor discount rate (%) d

 ES_i energy savings in year i of air compressor

initial incremental cost for more efficient air

compressor

IIC

PF price of fuel SF scaling factor $PV(ANS_i)$ present value of annualized net saving i of air compressor PEi percentage of electricity generation in year i of fuel type 1 (%) Em_{np} fossil fuel emission for a unit of electricity generation of fuel type 1 (kg)

1. Introduction

Use of compressed air in industry and in service sectors is common as its production and handling are safe and easy. In most industrial facilities, compressed air is necessary to manufacturing. Compressed-air generation is energy intensive, and for most industrial operations, energy cost fraction of compressed air is significant compared with overall energy costs. Yet, there is a vacuum of reliable information on the energy efficiency of a typical compressed-air system [1-6].

As a general rule, compressed air should be used only if safety enhancements, significant productivity gains, or labour reduction, will result as it is very expensive (see Fig. 1). Greenough [7] also reported how to select compressed-air system for an industrial

Annual operating costs of air compressors, dryers, and supporting equipment, can account from 70% [9–11] to 90% [12] of the total electric bill.

Compressed air accounts for as much as 10% of industrial electricity consumption in the European Union [13]. Fig. 2 shows compressed-air energy use in 15 EU countries. Compressed-air systems in China use 9.4% of China's electricity. Compressed air is probably the most expensive form of energy in a plant, because only 19% of its power are usable. In the US, compressed-air systems account for about 10% of total industrial-energy use [14], as in Malaysia [15]. In South Africa, compressed air consumes about 9% of total energy consumption [16,17]. Table 1 shows the industrial application of compressed-air system.

According to the total life cycle costs (LCC), initial investment and maintenance represents only a small portion of the overall cost of

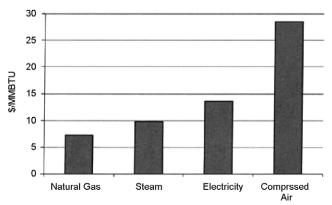


Fig. 1. Cost of energy delivery modes [8].

Download English Version:

https://daneshyari.com/en/article/1751452

Download Persian Version:

https://daneshyari.com/article/1751452

<u>Daneshyari.com</u>