ELSEVIER

Contents lists available at ScienceDirect

Renewable and Sustainable Energy Reviews

journal homepage: www.elsevier.com/locate/rser

Biomass energy in Malaysia: Current state and prospects

S. Mekhilef^{a,*}, R. Saidur^b, A. Safari^a, W.E.S.B. Mustaffa^a

- ^a Department of Electrical Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia
- ^b Department of Mechanical Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia

ARTICLE INFO

Article history: Received 10 December 2010 Accepted 5 April 2011

Keywords: Renewable energy Biomass Biofuel Biopower Malaysia

ABSTRACT

Today, energy crisis turn out to be a serious threat towards sustainability for developing countries since their energy demand is growing more rapidly than developed countries. On the other hand, fossil fuels cannot sustain anymore in the near future because of environmental impacts and depletion of the reserves. Malaysia is experiencing drastic growth in population and economy and requires exploring alternative energy sources to support its population and commercial energy demand. Biomass as the fourth largest energy resource in the world is abundant in the country. Malaysia is blessed with tropical and humid climate all year round which is a magnificent opportunity for fully exploiting agriculture and tropical forests potential. Since late 1990, the concept of waste-to-wealth had been promoted and became popular widely. This concept is based on unwanted wastes which are converted into valuable energy while reducing waste generated and increase the economy-efficiency mainly used for cooking, space heating and power generation. Currently, concerted efforts and various biomass energy programs are supporting by the government for development, demonstration and commercialization. This paper intent to present the current state and prospects of biomass utilization and strategies promoted for future developments in Malaysia.

© 2011 Elsevier Ltd. All rights reserved.

Contents

1.	Introduction			
	1.1.	Energy and biomass	3361	
		1.1.1. Energy status in Malaysia		
		1.1.2. Segregation in energy sector	3363	
	1.2.	Biomass categorization		
2.	Biom	nass energy utilization in Malaysia	3363	
	2.1.	Agricultural wastes	3363	
	2.2.	Forest residues.		
	2.3.	Municipal solid wastes (MSW)	3365	
		2.3.1. Clean Development Mechanism (CDM)		
	2.4.	Bio-fuels	3367	
	2.5.	Bio-power		
3.	Plan a	and strategies to promote biomass use in Malaysia	3368	
		lusion		
	References			

1. Introduction

Energy crisis has become a serious threat towards sustainability mostly for developing countries and communities in the last decades. During 1990–2000, developing countries of the Asia

Pacific region met 27% increase in conventional energy consumption while the world energy consumption was 11% [1]. Increasing in the energy demand is expected to continue in the future. Fossil fuels have been the main source of energy since first sparks of technology appeared in mankind lives, however, depletion of fossil fuel reserves as well as significant environmental impacts, leads the governments and authorities to focus on renewable energy resources. In most recent years, demand for petroleum-derived fuels is increasing as a result of grow in population and economy

^{*} Corresponding author. Tel.: +60 3 7967 6851; fax: +60 3 7967 5316. E-mail address: saad@um.edu.my (S. Mekhilef).

Nomenclature

FDP	Fuel Diversification Policy		
GDP	Gross Domestic Product		
EC	Energy Commission		
TNB	Tenaga Nasional Berhad		
SESB	Sabah Electricity Sdn. Bhd.		
CECCO	Camarinals Emanary Commiss Com		

SESCO Sarawak Energy Supply Corporation

DoE Department of Environment EFB Empty fruit bunches

MF Mesocarp fiber
MOP Molded oil palm
MSW Municipal solid waste

LFG Landfill gas GHG Greenhouse gases

UN Agenda 21 United Nations Agenda 21

SD Statistic Department
GWP Global Warming Potential
CDM Clean Development Mechanism

JI Joint Implementation

COP7 Conference of the Parties the 7th Session

CER Certified Emission Reductions
PTM Malaysia Energy Centre
PKE Palm kernel expeller

NG Natural gas

BTG Biomass Technology Group MPOB Malaysian Palm Oil Board FPISB Felda Palm Industries Sdn. Bhd.

CPO Crude palm oil

SREP Small Renewable Energy Power

REPPA Renewable Energy Power Purchase Agreement SCORE Special Committee on Renewable Energy

BioGen Biomass-based Power Generation and Co-

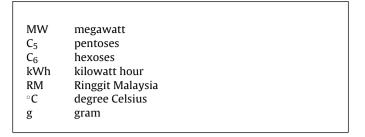
generation

UNDP United Nationals Development Program

USD United State Dollar

GEF Global Environment Facility

FiT Feed in Tarif TSHRB TSH Bio-Energy


UKM University Kebangsaan Malaysia USM University Science Malaysia UPM University Putra Malaysia UM University Malaya

UTM University Technology Malaysia UTP University Technology Petronas IUU International Islamic University

POME Palm Oil Mill Effluent RE Renewable energy

Subscripts

ktonnes	kilotonnes
km ²	square kilometre
ha	hectares
%	percentage
boe	barrels of oil equivalent
m^3	cubic metre
CH_4	methane
CO_2	carbon dioxide
N_2O	nitrous oxide
SF ₆	sulphur hexaflouride
HFC	hydrofluorocarbon
PFC	perfluorocarbon
kg	kilogram
B5	biodiesel fuel blend

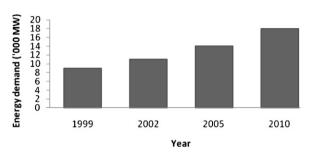


Fig. 1. Predictions of energy demand in Malaysia [4].

[2]. As economy grow, energy demand increases and brings along some changes in the energy consumption pattern which in turn varies with the source and availability, conversion loss and end use efficiency [3].

Fig. 1 illustrates the energy demand for Malaysia has been predicted in. It can be seen that the energy demand in Malaysia increases almost 20% between 1999 and 2002. And the energy demand is estimated to increase to 18,000 MW by 2010 [4].

Conventional fuels are limited and will not be able to sustain for another 100 years [5]. Therefore, somehow, other renewable petroleum-derived should be revealed as a backup energy and the most similar to the petroleum-derived is biomass energy. Global warming issues, environmental impacts and depletion of fossil fuel resources play important roles to improve the prospects of biomass energy technologies and consumption in the future. Biomass energy is the preeminent substitute to petroleum-derived energy and is suitable as a backup energy for sustainable energy development.

1.1. Energy and biomass

1.1.1. Energy status in Malaysia

Malaysia is well endowed with both fossil and renewable energy sources and has successfully controlled the country's demand for energy [6]. Table 1 presents types of the renewable energy resources in Malaysia, and energy value in Ringgit.

As it shows, renewable energy sources are widely available in the country. Despite its wide use already, there is still much to be done to optimize the utilization of renewable energy in Malaysia.

Table 1Types of renewable energy in Malaysia and its energy value [7].

31	00	
Renewable en	ergy source	Energy value in RM million (annual)
Forest residue	S	11,984
Oil palm biom	ass	6379
Solar thermal		3023
Mill residues		836
Hydro		506
Solar PV		378
Municipal was	ste	190
Rice husk		77
Landfill gas		4

Download English Version:

https://daneshyari.com/en/article/1751481

Download Persian Version:

https://daneshyari.com/article/1751481

Daneshyari.com