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An overview of the geostatistical toolkit is presented, fromdata analysis through estimation and simulation,with
a focus on problems that typically arise in the assessment and development of coal deposits. Geostatistical pro-
cedures for the data analysis are described, leading to a discussion of the importance of spatial variation and the
variogram. Themost common geostatistical estimation procedure, ordinary kriging, is presented as an improve-
ment to inverse-distance methods; two ways are presented of understanding kriging without recourse to the
underlying mathematics. Estimation and simulation are compared and contrasted, and the benefits of a family
of equally likely scenarios are covered. The paper concludes with brief summaries of the 16 additional papers
in the International Journal of Coal Geology's Special Issue on Geostatistics, and provides two indexes to guide
the reader to papers according to the problems they address and according to the tools they use.
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1. Introduction

Coal is currently the largest source of fuel for the generation of elec-
tricity and, with hundreds of years of identified reserves, coal will likely
remain the dominant energy fuel for decades. The development and pro-
duction of these huge, untapped reserves, however, is going to encounter

greater technical and economic difficulties: increased variability in coal
quality, greater structural complexity, and more deleterious compo-
nents. Geostatistics offers tools that are becoming increasingly valuable
for building the earth models needed by the coal industry in order to
assess and manage risk in the increasingly difficult projects that remain
to be developed and mined.

This overview presents a quick tour of the geostatistical landscape to
support the papers that appear in this International Journal of Coal Geol-
ogy (IJCG) Special Issue on Geostatistics. It begins where a typical project

International Journal of Coal Geology 112 (2013) 2–13

⁎ Tel.: +1 416 322 2857; fax: +1 416 322 5075.
E-mail address: MoSrivastava@benchmarksix.com.

0166-5162/$ – see front matter © 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.coal.2013.01.011

Contents lists available at SciVerse ScienceDirect

International Journal of Coal Geology

j ourna l homepage: www.e lsev ie r .com/ locate / i j coa lgeo

http://dx.doi.org/10.1016/j.coal.2013.01.011
mailto:MoSrivastava@benchmarksix.com
http://dx.doi.org/10.1016/j.coal.2013.01.011
http://www.sciencedirect.com/science/journal/01665162
http://crossmark.crossref.org/dialog/?doi=10.1016/j.coal.2013.01.011&domain=pdf


begins … data analysis… discussing how models of spatial variation are
developed. This is followed by a discussion of resource/reserve estimation
that includes a presentation of kriging, the work-horse of geostatistical
estimation. Resource/reserve classification is then discussed, with a look
at geostatistical methods for identifying the locations of “measured”,
“indicated” and “inferred” resources in a deposit. Conditional simulation,
the spatial version of Monte Carlo procedures, is introduced as an earth
modeling method that is well suited for studies of blending, as well as
studies that involve risk assessment.

The final section of this overview takes a look at the 16 papers that
have been selected for this volume, organizing them into thematic
groups so that the reader can develop a sense for where they'll find
material with relevance to specific problems and issues.

2. Spatial variation

In the discussion that follows, and in the papers in this Special Issue,
it will quickly become apparent that the cornerstone of geostatistics is
spatial variation. The main focus of geostatistical data analysis is under-
standing and describing the spatial patterns in variables like coal quality
and thickness. A key parameter that distinguishes geostatistical estima-
tion from other types of estimation, such as inverse-distance interpola-
tion, is a semi-variogram model (often just called a “variogram model”
for short) that controls the weights given to nearby data. The feature of
geostatistical simulation that sets it apart from othermethods for build-
ing earthmodels is that it explicitly aims to correctly portray spatial var-
iation. From start to finish through a geostatistical study, it is spatial
variation that structures our thinking.

The reason that geostatisticians are curious about the spatial variation
is that it plays an important role inmany key aspects of the assessment of
a coal deposit:

• Knowing something about the direction of maximum continuity is
very useful when we are trying to make predictions of thickness
and coal quality. Between the available drill holes, we are going to
have to interpolate using the surrounding data, giving each one of
the nearby samples a weight that reflects its importance to the esti-
mate. If the geological evolution of the deposit has created a grain, a
tendency for similar values to line up in a particular direction, then
we can improve the reliability of our estimates by taking this into
account when we interpolate.

• Knowing something about the noise in the data, or in particular
sub-groups of data, allows us to make good choices about how much
we should rely on any particular data point. If we have noisy unreliable
data from old drill holes as well as more reliable data from new core
holes, we would like to be able to lean more heavily on the reliable
data, and less heavily on the not-so-reliable data. Our understanding
of spatial variation will assist us in making good choices about how
best to weight a combination of noisy and reliable data.

• Knowing something about spatial variation is helpful when trying to
predict run-of-mine variability in a project that may require blending.
If we know that significant changes in coal quality are possible over
short distances, then we know that an open-pit operation with only
one operating face may experience large daily fluctuations in the qual-
ity of coal shipped from themine. If we have documented the possibil-
ity of large short-scale fluctuations, and we know that the project
cannot tolerate large fluctuations, then we know that we need to con-
sider some kind of blending…maybe the project needs several active
operating faces to enable in-pit blending; maybe it needs engineered
blending piles.

• Since our confidence in any particular estimate depends on howmuch
the nearby data fluctuate, and how close they are, knowledge of the
pattern of spatial variation is valuable for quantifying the uncertainty
in our estimates. Risk analysis, and the ability to make decisions in
the face of uncertainty, are both improved when we have an ability
to establish reliable confidence intervals for all of our estimates.

• Knowing something about the spatial variation is helpful when classi-
fying resources into the “measured”, “indicated” and “inferred” cate-
gories required by governmental regulations. If, for example, a
particular estimate is based on many data that lie within the range
that we can comfortably do geologic correlations, we have good rea-
son to regard this as more reliable than another estimate that is
based on data that all lie beyond the range over which we can com-
fortably correlate data.

3. Data analysis

3.1. Classical statistics

Many of the tools of geostatistical data analysis used in the papers
in this volume will already be familiar to the reader because they are
the graphical and numerical summaries used in classical statistics.

Fig. 1 shows an example of the graphical summaries commonly used
for univariate data analysis along with the usual numerical summaries;
these examples, as with many of the ones used in this overview, are
from a coal deposit in the Powder River Basin in Wyoming. The histo-
gram records the number (or percentage) of data values in each class,
providing a visual sense for the range of values, their center and their
spread. Statistics anchor this visual sense with specific information:
the mean and median are measures of the center of the distribution;
the variance and standard deviation are measures of the spread of the
distribution.

The cumulative probability plot shows the chance (from 0 to 1) of
a data value being lower than any given value on the x-axis. Often,
this is presented with the y-axis, the probability axis, transformed
in such a way that the data will plot as a straight line if they follow
the classical bell-shaped distribution known as the Normal (or Gauss-
ian) distribution.

A boxplot is a compact graphical summary that spares us the de-
tail of the histogram, focusing our attention instead on a handful of
key characteristics. The box in the middle of the diagram goes from
the 25th percentile to the 75th percentile, i.e. it spans half the data;
the arms that stick out of the box go to the minimum and maximum.
The bar in the middle of the box records the location of the median,
and the dot records the location of the mean. The compact nature of
the boxplot makes it an excellent format for comparing distributions;
with a group of side-by-side boxplots, we can readily judge if distri-
butions from different populations are similar.

Fig. 2 shows an example of a scatterplot, the graphical summary
most commonly used when we are analyzing more than one variable
at a time. The statistic most commonly used to describe a bivariate
relationship is the correlation coefficient, a number that lies between
−1 and +1, and that measures how close the cloud of points comes
to falling on a straight line.

The straight line most commonly used as a point of visual reference
for a scatterplot is the conventional regression line. In addition to pro-
viding a mathematical equation that serves as a kind of summary of
the cloud, the regression line is also a statistically optimal predictor.

When statisticians use the word “optimal” to describe a predic-
tion, they almost always are referring to a prediction that minimizes
the squared error. Whenever we try to predict something, we know
that our prediction is likely wrong; we would be unimaginably
lucky to hit the nail right on the head, so we accept that there is
going to be an error, i.e. the difference between our prediction and
the true value. “Least squares” estimates and “best linear unbiased es-
timates (BLUE)” are terms used in statistics for estimates produced by
a procedure that explicitly aims to minimize the squared error. The
classical regression line is the line that minimizes the sum of the
squared differences between all the points in the cloud and the line
(with the difference calculated vertically from the point to the line).
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