FISEVIER

Contents lists available at ScienceDirect

Dyes and Pigments

journal homepage: www.elsevier.com/locate/dyepig

Triazolium-promoted highly selective fluorescence "turn-on" detection of fluoride ions

Jihee Cho ^{a, 1}, Illan Kim ^{a, 1}, Jong Hun Moon ^{b, 1}, Hardev Singh ^c, Hyo Sung Jung ^c, Jong Seung Kim ^{c, *}, Jin Yong Lee ^{b, **}, Sanghee Kim ^{c, ***}

- ^a College of Pharmacy, Seoul National University, Seoul 151-742, South Korea
- ^b Department of Chemistry, Sungkyunkwan University, Suwon 440-746, South Korea
- ^c Department of Chemistry, Korea University, Seoul 136-701, South Korea

ARTICLE INFO

Article history: Received 9 March 2016 Received in revised form 6 May 2016 Accepted 7 May 2016 Available online 9 May 2016

Keywords: Fluoride detection 1,2,3-triazolium Fluorescent probe Pyrene DFT calculation

ABSTRACT

Through copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) reactions, new pyrene-appended triazole- and triazolium-based fluorescent probes have been synthesized and their binding capabilities for anion recognition were investigated. The probes showed different fluorescence behavior in response to fluoride (F^-) ions. The probe bearing a triazolium moiety, displayed a high selectivity towards F^- ions via $C-H\cdots F^-$ hydrogen bonding interaction and de-protonation that was accompanied by fluorescence "turn-on". Further, the experimental observations were well supported by ¹H NMR spectroscopy and density functional theory (DFT) calculations.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The ubiquity of anions and their fundamental roles in biological and chemical processes necessitates the development of effective anion recognition systems as a forefront research topic in the field of supramolecular chemistry [1–7]. Of various anions, fluoride (F⁻) is one of the most important biological ions and has received considerable interest from scientists because of the indispensable roles of fluoride in the health science. In fact, F⁻ intake is always regarded as a double-edged sword. Appropriate fluoride intake helps prevent osteoporosis and dental cavities, while excessive intake can lead to dental and skeletal fluorosis and urolithiasis [8–10]. Thus, there is a pressing need for the development of chemosensors that are capable of selectively recognizing F⁻ ions. Taking advantage of its highly basic nature and strong interactions with H-bond donor groups (*i.e.*, NH group) [11,12], a number of derivatives

bearing NH groups have been extensively studied as F^- sensors in which NH–anion hydrogen bonds (NH···F $^-$) or anion-induced deprotonation of NH bonds ($[F-H-F]^-$) was observed [13–21].

In recent years, the development of Cu(I)-catalyzed azide-alkyne cycloaddition (Click chemistry) reactions (CuAAC) has helped to drive the evolution of new receptor designs. The large dipole moment of 1,2,3-triazole, a featured functional group of CuAAC, makes the C–H bond sufficiently polarized to participate in hydrogen bonding interactions with anions (C–H···A⁻) [22–25]. Furthermore, this interaction can be enhanced by converting a triazole ring into a triazolium cation. These polarized C–H bonds have been recently demonstrated as a novel motif for the recognition of several anions [26–30]. However, till date there are only limited reports that utilize C–H bond for the recognition of fluoride ions [31–33].

Herein, we have explored recently established $C-H\cdots A^-$ hydrogen bond interaction to compare recognition abilities and sensing mechanism of triazole and triazolium rings for F^- ions. In this regard, we designed two pyrene-appended fluorescent probes, **1** and **2** (Fig. 1). In both designs, pyrene was chosen as the fluorescent reporter because of its well-defined monomer and excimer emission spectrum. For recognition purposes, probes **1** and **2** were decorated with triazole rings and triazolium rings, respectively. A

^{*} Corresponding author.

^{**} Corresponding author.

^{***} Corresponding author.

E-mail addresses: jongskim@korea.ac.kr (J.S. Kim), jinylee@skku.edu (J.Y. Lee), pennkim@snu.ac.kr (S. Kim).

¹ J. Cho, I. Kim, and J. H. Moon contributed equally to this work.

$$N = N$$
 $N = N$
 $N =$

Fig. 1. The structures of probes 1, 2, and the reference compound 11.

cyclopentane moiety was introduced as a bridge between the rings to take advantage of the Thorpe-Ingold effect in providing conformational constraint for the linear system. The experimental results have been further supported by ¹H NMR spectra and density functional theory (DFT) calculations.

2. Materials and methods

2.1. Materials and instrumentation

All fluorescence and UV/Vis absorption data were collected using JP/U-3010 (Hitachi Ltd., Chiyoda, Tokyo, Japan) and FP-6500 (Jasco Inc., Mary's Court Easton, Maryland, USA) spectrophotometers, respectively. NMR was recorded using a Avance 400, Avance 500 (Bruker, Billerica, Massachusetts, USA) and JNM-ECA-600 (Jeol Ltd., Musashino, Akishima, Tokyo) spectrometer (400, 500, or 600 MHz). All reagents and anionic compounds used as tetrabutylammonium salts of Br⁻, Cl⁻, ClO₄, CN⁻, F⁻, H₂PO₄, HSO₄, I⁻, NO₃, and OAc⁻ were purchased from Aldrich (St. Louis, MO, USA). Dimethyl sulfoxide (DMSO) for spectra detection was a technical grade reagent without fluorescent impurity.

2.2. UV/Vis and fluorescence spectroscopic methods

Stock solutions of tetrabutylammonium salts were prepared in DMSO. All spectra were recorded in 6 μM of DMSO solution. Excitation was carried out at 344 nm with all excitation and emission slit widths at 3 nm.

2.3. Theoretical studies

The structures of probes were optimized by density functional theory (DFT) and time-dependent DFT (TDDFT) calculations with M06-2X functional and 6-31G* basis sets using a suite of Gaussian 09 programs [34]. The optimized geometries of all the species were confirmed to be local minima from the all-positive frequencies. The Cartesian coordinates for the optimized probes were summarized.

2.4. Synthetic methods

Compounds 1, 2, 4, 6–9, and 11 were newly synthesized in this study by modifying the procedure (Scheme 1 and S5).

2.4.1. Compound **4**

To a solution of TMSN₃ (8.90 mL, 22.5 mmol), p-TsOH·H₂O

(4.28 g, 22.5 mmol) and BF₃·Et₂O (11.1 mL, 45.0 mmol) in CH₂Cl₂ (100 mL), alcohol **3** (6.00 g, 22.5 mmol) in CH₂Cl₂ (20 mL) was slowly added at -78 °C and the mixture was stirred for 30 min at -78 °C. The mixture was allowed to warm up to rt and was stirred for an additional 1.5 h. The reaction mixture was diluted with water and neutralized with NaHCO₃. The mixture was extracted with EtOAc and washed with a solution of saturated NaHCO₃. The organic layer was dried with MgSO₄, filtered, and concentrated *in vacuo*. The residue was purified by column chromatography on silica gel (only hexane) to give **4** (5.65 g, 86%) as a colorless oil. IR (neat, cm⁻¹) ν_{max} 2943, 2891, 2865, 2165, 2100, 674. ¹H NMR (CDCl₃, 500 MHz) δ 2.01 –1.89 (m, 4H), 1.77 –1.74 (m, 4H), 1.07 (s, 3H), 1.06 (s, 18H). ¹³C NMR (CDCl₃, 125 MHz) δ 106.1, 86.1, 66.3, 40.5 (2C), 23.3 (2C), 18.5 (6C), 11.0 (3C). HRMS (FAB) calcd. for C₁₆H₃₀N₃Si [M–H]⁺ 292.2209. found 292.2216.

2.4.2. Compound **6**

A solution of azide 4 (417 mg, 1.43 mmol), acetylene 5 (400 mg, 1.57 mmol), CuSO₄ (11.4 mg, 0.08 mmol), sodium ascorbate (28.3 mg, 0.14 mmol) and TBTA (41.7 mg, 0.08 mmol) in t-BuOH/ H₂O (29 mL, 1:1) was stirred at 35 °C for 10 h. After the solvents were removed in vacuo, the resulting residue was purified by silicagel column chromatography (hexane/EtOAc, 5:1) to afford 6 (780 mg, quant.) as a light yellow oil. IR (neat, cm⁻¹) v_{max} 3043, 2943, 2865, 2170, 1461, 1214, 748. 1 H NMR (CDCl₃, 500 MHz) δ 8.24 (d, J = 9.5 Hz, 1H), 8.14 (d, J = 7.6 Hz, 2H), 8.06 (d, J = 7.7 Hz, 1H),8.06 (d, J = 9.3 Hz, 1H), 8.00 (s, 2H), 8.06 (t, J = 7.6 Hz, 1H), 7.82 (d, J = 7.6 Hz, 1H), 7.J = 7.8 Hz, 1H), 7.40 (s, 1H), 3.73 (t, J = 7.9 Hz, 2H), 3.29 (t, J = 7.8 Hz, 2H), 2.54-2.52 (m, 2H), 2.28-2.23 (m, 2H), 1.90-1.89 (m, 4H) 0.96 (s, 21H). ¹³C NMR (CDCl₃, 125 MHz) δ 146.3, 135.3, 131.3, 130.8, 130.0, 128.7, 127.4, 127.3, 127.2, 126.7, 125.8, 125.0, 124.90, 124.85, 124.7 (2C), 123.1, 120.8, 107.3, 87.1, 65.8, 42.0 (2C), 33.2, 27.6, 23.6 (2C), 18.4 (6C), 10.9 (3C). HRMS (FAB) calcd. for C₃₆H₄₄N₃Si [M–H]⁺ 546.3305, found 546.3300.

2.4.3. Compound 7

To a solution of triazole monomer **6** (505 mg, 0.93 mmol) in THF (10 mL) was added acetic acid (115 μ L), followed by tetrabuty-lammonium fluoride (876 mg, 2.78 mmol). The reaction mixture was stirred at rt for 2 h. After the starting materials were consumed, a solution of saturated NH₄Cl was added. The resulting mixture was then extracted with EtOAc, the combined organic layers were dried with MgSO₄, filtered, and concentrated *in vacuo*. The residue was purified by column chromatography on silica gel (hexane/EtOAc, 2:1) to afford acetylene **7** (322 mg, 90%) as a light brown solid. m.p.

Download English Version:

https://daneshyari.com/en/article/175340

Download Persian Version:

https://daneshyari.com/article/175340

Daneshyari.com