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The evaluation of a coal seam for profitable extraction requires the estimation of its thickness and quality
characteristics together with the spatial variability of these variables. In many cases the only data available
for the estimation are from a limited number of exploration and feasibility drill holes. Spatial variability
can be quantified by geostatistical modelling, which provides the basis for estimation (kriging). In cases
where the spatial variability of the seam thickness and quality characteristics has a significant impact on
how the coal is extracted and stored, geostatistical simulation may be preferable to geostatistical kriging
methods. The aim of this paper is to present an improved approach to resource risk assessment by propagat-
ing the uncertainty in semi-variogram model parameters into the spatial variability of coal variables. We
show that a more realistic assessment of risk is obtained when the uncertainty of semi-variogram model pa-
rameters is taken into account. The methodology is illustrated with a coal seam from North-western Spain.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

One of the most significant contributors to the total risk in the
evaluation of a coal-mining project is the uncertainty of the resource
tonnage and quality characteristics, often called the resource risk
(see, for example, Sobczyk, 2010). The depositional and tectonic his-
tory of basin coal deposits is a significant determinant of the spatial
variability of the thickness and quality characteristics of constituent
coal seams and may have a major impact on the accuracy of coal re-
source estimates and, ultimately, on the investment risk. The thick-
ness of a coal seam determines the total resource tonnage whilst the
quality parameters (calorific value, ash content and total sulphur con-
tent) determine the coal price.

There are several ways in which geostatistics can improve coal
seam resource estimation (Larkin, 2009; Olea et al., 2011):

• Estimation of coal seam thickness and overburden volumes.
• Estimation of coal seam quality parameters.
• Provision of confidence limits on these estimations.
• Optimisation of drilling: determining where to place additional drill
holes and determining the minimum drill hole spacing for the clas-
sification of resources as measured, indicated or inferred.

• Simulation of mining operations to achieve a particular objective
such as minimising the variability of the quality characteristics of
mined or stock-piled product so as, for example, to meet sales con-
tract specifications.

Although kriging has been used extensively to address most of
these problems (Noppé, 1994; Demirel et al., 2000; Watson et al.,
2001) it has two important drawbacks. Firstly, although kriging is
distribution-free and provides the estimation variance as a measure
of the uncertainty of the estimates, a distribution must be assumed
to provide confidence limits for the estimates; in addition, the esti-
mates are spatially correlated as are the measures of uncertainty.
The usual approach is to assume a Gaussian (Normal) distribution be-
cause of its simplicity but other more suitable alternatives can be
found at the expense of increased computing time. Secondly, kriging
provides estimated values of the coal seam variables that have less
variability than the real values, i.e., the estimated values are smoother
than reality.

Geostatistical simulation is awell-established technique (e.g., Journel
and Huijbregts, 1978; Remy et al., 2009) that can be used to generate
realisations that reproduce the spatial variability of coal seam pa-
rameters. In applications, a set of simulated realisations is used to as-
sess the impact of the spatial uncertainty of the variables of interest
(e.g., thickness, coal quality variables). The simulation, however, is
based on a semi-variogram model that is estimated from the relatively
sparse, available data and thus themodel itself is uncertain.We quantify
the uncertainty of the semi-variogram model by assessing the uncer-
tainty of the semi-variogram model parameters and considering a set
of likely model parameters. This quantification provides a means
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of propagating the uncertainty in the semi-variogrammodel param-
eters into the uncertainty of the estimated coal seam variables
(Pardo-Igúzquiza and Chica-Olmo, 2008).

The consequence of many depositional mechanisms, such as allu-
vial fans that have in-filled basins, is a directional thickening or thin-
ning of a seam; tectonic mechanisms, such as rifting or differential
subsidence, can have similar consequences. In geostatistical terminol-
ogy the systematic increase or decrease of seam thickness in one or
more directions is termed a drift or trend, which must be accounted
for in estimation and simulation. The two common ways of accom-
modating drift in estimation and simulation are explicit modelling
and the use of intrinsic random functions (Wackernagel, 2003) al-
though, as we expound in the following section, there is a more par-
simonious solution.

2. Methodology

The estimation of coal tonnage and coal quality is based on the
available data, which, at the resource estimation stage, is usually lim-
ited to exploration and feasibility drill holes. The significant advan-
tage of geostatistical methods over other methods (e.g., polygonal,
inverse distance) of estimating resources and reserves is that they
are probabilistic. The outcome of a probabilistic process (estimation
or simulation) is a random field of spatially variable values. Two de-
cisions must be taken in any applied geostatistical study:

• whether the variable of interest (e.g., thickness) can be considered
stationary (intrinsic or second-order) (Myers, 1989) or there is a
trend that must be modelled; and

• how a semi-variogram model can be estimated from the data.

With respect to the first question, mean coal seam thickness often
exhibits a trend that reflects the geological origin of the coal from
sediment deposition within a basin or sub-basins and the effects of
differential subsidence, or other mechanisms, on those basins. In
principle, a non-stationary model is the most appropriate for estima-
tion in such cases. However, coal resources are usually estimated
from data from exploration and feasibility drill holes, on a more or
less regular grid, that provide good coverage of the area of interest;
in such cases the estimation of resources is similar to an interpolation
problem. In this situation, Journel and Rossi (1989) have shown that a
stationary model within a local search window gives very similar
results to those obtained from a non-stationary model in which the
drift is explicitly included. The presence of sufficient data, regularly
distributed over the area of interest, has the double effect of condi-
tioning and screening. Conditioning implies that, even if a stationary
model is used within a local search window, the global drift is implic-
itly introduced into the final fields (whether estimated or simulated).
Screening implies that, at an unsampled location, the closest neigh-
bours are the most informative and influential values, in both kriging
and simulation, and they screen the effect of neighbours that are
further away from the location at which a value is to be estimated
or simulated.

With respect to the second question, visualfitting is very common in
mining applications largely because a competent resource estimator
can take into account his/her own knowledge of the geology and struc-
ture of the deposit to interpret the behaviour of the semi-variogram
(e.g., nugget effect, anisotropy, zonal effect). However, when a semi-
variogrammodel is estimated from a small number of data, the param-
eters of themodel have an associated uncertainty that must be assessed
and included in estimation or simulation. Thus a parametric approach,
such as maximum likelihood estimation, is more appropriate because
it provides the uncertainty of the parameters of the semi-variogram
model that is fitted to the calculated values (Pardo-Igúzquiza, 1998).
Nevertheless, there are other alternatives for modelling the uncertainty
of semi-variogram parameters such as bootstrap methods (Olea and
Pardo-Igúzquiza, 2011) and Bayesian procedures (Kitanidis, 1986).

Given a set of n data z, the semi-variogram parameter estimates
are obtained as the values that minimise the negative log-likelihood
function (ℓ) given by (Kitanidis, 1983):

ℓ θ;σ2 ^;β ; z
� �

¼ n
2
ln 2πð Þ þ n

2
ln σ2
� �

þ 1
2
ln Qj j

þ 1
2σ2 z−βð Þ0Q−1 z−βð Þ

h i
ð1Þ

where, θ'=(r0,a) is the vector of correlogram parameters: the nugget/
variance ratio and the range respectively. σ2 is the variance parameter.
Q=Q(r0,a) is the n×n correlation matrix, which depends on r0 and a.

β̂ is the estimated global mean and z'=(z(u1),z(u2),…,z(un)) is the
1×n vector of n spatial datawith the general element z(ui) being the ith
data value at the spatial locationui={xi,yi}.β0 ¼ β̂ ^;β ;… ^;β

� �
is the 1×n

vector with all elements equal to the global mean, which is estimated
as:

β̂ ¼ 10Q−11
� �

10Q−1z ð2Þ

1'=(1,1,…,1) is a 1×n vector of ones.

The maximum likelihood estimates, θ̂
� ¼ θ̂; σ̂ 2

n o
, of the semi-

variogram parameters, θ and σ2, are the values that minimise the
NLLF ℓ ;ð Þ in Eq. (1). Software for obtaining the maximum likelihood
estimates may be found in Pardo-Igúzquiza (1997) and Diggle and
Ribeiro (2007) among others.

One way of providing confidence regions (that is, sets of parame-
ter values that have a given probability of being the true parameter
values) is by using likelihood regions (sets of parameters which the
NLLF is smaller than a given threshold) and the likelihood ratio statis-
tic (Kalbfleisch, 1979):

D θ�
� � ¼ −2 ln

likelihood θ�ð Þ
likelihood θ̂�

� � ð3Þ

That is,
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� � ¼ 2 ℓ θ�
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−ℓ θ̂�
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whereD(θ*) is the likelihood ratio statistic;ℓ θ�ð Þ ¼ − ln likelihood θ�ð Þf g
is the NLLF value for a set of arbitrary covariance parameters θ*; ℓ θ̂

� �

is the NLLF value for the set of ML covariance parameter estimates θ̂.
It can be shown that for large n, D(θ*) is approximately chi-square

distributed with p degrees of freedom (McCullagh and Nelder, 1989):

D θ�
� �

≈χ2
p ð5Þ

where the symbol≈ denotes “distributed as”, χp
2 is the chi-square dis-

tribution with p degrees of freedom where p is the number of covari-
ance parameters. In our case of Gaussian likelihood, D(θ⁎) will have
a chi-square distribution without any further assumption. Even for
more complicated cases the distribution is asymptotically chi-square
(Wilks, 1953) or a variation of chi-square (Chernoff, 1953).

Hence, for example, an approximate 75% confidence interval for
the three parameters (p=3) (nugget variance, variance and range)
is defined by the set of parameters with NLLF satisfying the criterion:
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An application is presented in the following case study.
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