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a b s t r a c t

Response surface methods are commonly used in history matching process to approximate the func-
tional relationship between the input parameters and the aggregated mismatch. The quality of the proxy
(accuracy in prediction) degrades as the nonlinearity of the response surface increases. However, com-
monly-used definitions of aggregated mismatch, such as root mean squared error (RMSE) or mean ab-
solute error (MAE), are highly nonlinear. As a result, the quality of the proxy for aggregated mismatch can
be unsatisfying in many cases.

In this work, we propose the proxy-for-data (PFD) approach, in which one proxy is built for each
observation data point and then the data values predicted by those proxies are used to calculate the
aggregated mismatch. Because proxies are constructed for the data themselves rather than for the ag-
gregated mismatch, the nonlinearity of the aggregated mismatch definition will not affect the quality of
the proxy. It is shown in multiple test cases that the new approach could potentially improve proxy
quality for different types of proxies and different aggregated mismatch definitions. For cases with a large
amount of observation data points, we also show that the use of reduced-order modeling can efficiently
reduce the number of proxies needed and achieve similar improvement. The new approach is success-
fully applied to both synthetic and field examples and both examples show improved proxy quality.

& 2016 Published by Elsevier B.V.

1. Introduction

History matching is the process to update the reservoir models
using measurement data, such as historical production, pressure,
and seismic data. It plays an essential role in reservoir modeling
and management. Existing methods for history matching can
generally be divided into two categories: deterministic methods
and stochastic methods (Oliver and Chen, 2011). Deterministic
methods, such as the various gradient-based method (Sarma et al.,
2006), try to find a single model that best matches with historical
data. Stochastic methods, such as rejection sampling (Caers, 2011)
and Markov chain Monte Carlo (MCMC) (Ma et al., 2008), try to
quantify the posterior distribution of the reservoir model para-
meters after incorporating the data.

One key component in most history matching methods is the
mismatch function. A mismatch function, typically defined as the
root mean square error (RMSE) or the mean absolute error (MAE)
between the simulated data and the observed data (Tarantola,
2005), quantifies the degree of consistency of a reservoir model
with the historical data. Each evaluation of the mismatch function

requires one reservoir simulation, which, for practical field cases,
can already take hours if not days. Furthermore, most history
matching methods typically require large numbers of mismatch
function evaluations. The computational cost for history matching
can be very expensive if all evaluations are done through reservoir
simulation.

One way to reduce the computational cost is to construct a
response surface proxy for the mismatch function. A response
surface proxy is a parameterized mathematical expression that can
be calibrated on a set of training data to approximate the input/
output relations of the mismatch function. For typical problems,
the response surface proxies take less than a second to construct
and evaluate. Once the response surface proxy is constructed, it
can be used in place of the simulator to evaluate the mismatch
function and to significantly speed up the history matching pro-
cess. Response surface proxies have been widely used for history
matching (Landa and Güyagüler, 2003; Castellini et al., 2006;
Friedmann et al., 2003). Many types of proxies have been in-
troduced, including Kriging, splines, and polynomial functions.
Yeten et al. (2005) provides a review and a comparison of different
types of response surface proxies and Bhark and Dehghani (2014)
provides a benchmarking of different experimental design tech-
niques for assisted history matching.

One problem of the response surface methodology often faced
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by engineers is the inaccuracy of the mismatch proxy. For example,
(Slotte and Smorgrav, 2008) applied Markov chain Monte Carlo
and response surface methodology to history match production
data and they reported a correlation coefficient of only 0.52 (as a
rule of thumb this number needs to be at least 0.85 for the proxy
to be considered accurate). Zubarev (2009) investigated the pros
and cons of proxy models and concluded that “with increasing
complexity of the solution space”, “the application of the proxy-
modeling methodology is not recommended for history matching”.
One of the reasons why the mismatch proxy is not accurate is that,
for most types of mismatch definitions, be it RMSE or MAE, the
mismatch function is highly nonlinear, while most response sur-
face proxies perform best when the underlying objective function
is linear. It is true that increasing the number of training simula-
tions may improve the proxy quality (Castellini et al., 2010).
However, that translates to a higher computational cost.

In this paper, we are interested in improving the mismatch
proxy quality with the same number of simulations by changing
the way mismatch function is evaluated. We propose a proxy-for-
data (PFD) approach, in which, instead of building proxy directly
on the (nonlinear) mismatch, we build proxy for each simulated
data point that is potentially more linear and calculate the mis-
match using the data values predicted from these data proxies.
Because the proxies are constructed for simulated data points ra-
ther than for the mismatch, the quality of the proxies would not be
affected by the nonlinearity introduced by the definition of mis-
match function (MAE or RMSE). We will show that the proposed
PFD approach can substantially improve the mismatch proxy
quality in two cases for different types of data, different types of
proxy and different types of mismatch definition.

The proposed PFD approach does require constructing one
proxy for each data point. For cases with a large number of ob-
servation data, the additional computational cost may become a
concern. For such cases we propose the use of reduced-order
modeling (He et al., 2011, 2013; He and Durlofsky, 2014) to project
the high-dimensional data vector into a much lower-dimensional
subspace. We will show that the use of reduced-order modeling
can significantly reduce the number of proxies needed while
preserving the benefits of the PFD approach.

The paper proceeds as follows. We will first present the tradi-
tional proxy-for-mismatch (PFM) approach of constructing the
mismatching and demonstrate its limitation. We then present the
new PFD approach and demonstrate its improvement over the
PFM approach with numerical result. Then, we introduce the re-
duced-order modeling treatment for the PFD approach and apply
it to the Brugge case where we have a large number of data. Fi-
nally, a summary of our findings and suggestions for future work
will be provided at the end of the paper.

We note that an earlier version of this work was presented in
an SPE conference proceeding paper (He et al., 2015).

2. Problem formulation

2.1. Mismatch function

In history matching, the degree a model m is consistent with
the measurement data d is usually quantified by a so-called mis-
match function ( )J m . Here m is the vector of uncertain parameters
in the system, such as permeability multipliers, relative perme-
ability end point, and compressibility. = [ … ]d d dd , , , nd1 2 is a vector
of measurement data, such as water cut, BHP or PLT data (nd is the
number of data points).

We denote as ( ) = [ ( ) ( ) … ( )]g g gg m m m m, , , nd1 2 the vector of
data values predicted by the simulator. The mismatch function J is
usually defined as the norm of the difference between the actual

measurement d and ( )g m . Depending on the kind of norm used,
there are different definitions, such as the root mean square error
(RMSE)
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It is clear that the mismatch function ( )J m is a highly nonlinear
function in terms of ( )g mi whichever norm definition is used.

2.2. Response surface methodology

Each evaluation of the mismatch function ( )J m requires a re-
servoir simulation to be performed to calculate the predicted data
value ( )g m . While one reservoir simulation can be expensive al-
ready, existing history matching methods usually require hun-
dreds or thousands of evaluations of the mismatch function ( )J m .
Therefore, the computational cost can be significant if all the
evaluations are performed using reservoir simulation.

To reduce the number of simulations needed, response surface
methods are often used. A response surface proxy is a para-
meterized mathematical function that approximates the input/
output relationship of the objective function, in the case, the
mismatch function ( )J m . Once a proxy is constructed, it can be
used in place of reservoir simulation to evaluate ( )J m for history
matching to significantly reduce the computational cost. Proxy
methods are widely used for history matching and optimization
applications (Landa and Güyagüler, 2003; Castellini et al., 2006;
Friedmann et al., 2003). Popular proxy methods include linear
Kriging, splines, and polynomial functions. See Yeten et al. (2005)
for a more thorough review.

A proxy is constructed by fitting a parameterized mathematical
function to a set of input/output pair ( ) = …J i nm , , 1, ,i i s called the
training data (ns is the number of training data points). Each
training data point is obtained from one reservoir simulation
called a training simulation. The input parameters = …i nm , 1, ,i s
on which training simulations are performed are usually de-
termined through a process called experimental design, which
determined a set of points mi in the parameter space, such that
the point set spans the parameter space as evenly as possible and
the simulation result at those points can best represent the input-
output relationship of the mismatch function. Frequently used
methods include D-Optimal design and space-filling designs (Ye-
ten et al., 2005). In this paper, space-filling designs will be em-
ployed in all cases.

Here and throughout the rest of the paper, we will use Black-
board Bold font to denote the proxy function in order to distin-
guish it from the true objective function. For example, the proxy
function for the mismatch function ( )J m will be denoted as ( ) m .
With this notation, the procedure to construct a proxy for ( ) m is
summarized as below.

� Step 1. Perform experimental design to generate ns design
points in the uncertainty parameter space.

� Step 2. Perform a reservoir simulation on each of the design
points and calculate the values of the mismatch function J

� Step 3. Fit a parameterized mathematical function ( ) m to the
point set ( ) = ⋯m J i l, , 1i i s.� Step 4. Use the mathematical function ( ) m in place of the re-
servoir simulation to evaluate the mismatch function ( )J m for
history matching
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