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a b s t r a c t

Lithology identification is a key step in reservoir characterization. Linear discriminant analysis (LDA) is a
widely used method for lithology identification. However, LDA suffers from the disadvantage that it can
only extract linear features, whereas nonlinear features in the lithological feature space often play a role
in lithology identification. In this paper, we introduce kernel Fisher discriminant analysis (KFD), an
improved LDA with kernel trick, to overcome the shortcoming of LDA for lithology identification. It in-
cludes two processes: raising dimensions to get nonlinear information and reducing dimensions to get
classification features. By these processes, it can obtain nonlinear classification features efficiently. To
examine the effect of KFD for lithology identification, experiments are implemented on a field data set by
KFD and auxiliary methods, namely LDA and traditional nonlinear discriminant analysis (quadratic dis-
criminant analysis, QDA). By comparisons from different aspects, the results show that KFD outperforms
LDA and QDA and it is a practicable method for lithology identification.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

Lithology identification is extremely important in reservoir
characterization. However, the lithology cannot be measured by
well logs directly, and evaluating the lithology from core data is
generally of limited use. In fact, it is often predicted based on well
log data (Ma, 2011; Rogers et al., 1992; Ali et al., 2006; Grana
et al., 2012).

Since the introduction of well logs, many mathematical meth-
ods have been used for predicting lithology based on well log data
(Delfiner et al., 1987). Linear discriminant analysis (LDA) was in-
troduced early on for lithology identification and it has been
proved practical (Busch et al., 1987). However, with the compli-
cating practical reservoir, nonlinear features begin to play a sig-
nificant role, and LDA underperformed nonlinear algorithm, such
as artificial neural network (ANN) (Dubois et al., 2007) and sup-
port vector machines (SVM) (Al-Anazi and Gates, 2010a,b). The
characteristic that LDA can only extract linear features (Kim and

Kittler, 2005) restricts its performance. Nevertheless, LDA has an
advantage that both ANN and SVM lack. LDA is a feature extraction
method and a dimensionality reduction method, so the process of
lithology classification can be easily visualized (Wang and Paliwal,
2003; Tominaga, 1999), while artificial intelligence algorithm
(ANN, SVM, etc.) cannot, because they are black boxes to some
extent (Tu, 1996; Gardner and Dorling, 1998). Geologists can see
and control the lithology identification better by LDA, because
classifier is visible when the extracted features are shown in a
plane or a space.

To alleviate the shortcomings of LDA mentioned above and re-
main its advantages, kernel Fisher discriminant analysis (KFD)
(Scholkopft and Mullert, 1999; Baudat and Anouar, 2000) is in-
troduced for lithology identification. It is an improved LDA by kernel
trick (Shawe-Taylor and Cristianini, 2004). The implementation of
KFD includes two steps: (a) map the data into an implicit feature
space (usually nonlinear space) by kernel trick; (b) apply LDA in the
feature space (Yang et al., 2004; Xu et al., 2004).

In this paper, a field data set is to examine the potential of KFD
to identify lithology. The data set from Junggar Basin in China is
chosen to carry out comparative experiments by KFD and auxiliary
methods. Auxiliary methods include LDA and quadratic dis-
criminant analysis (QDA), which is an extension of LDA with a
quadratic decision surface, while LDA has a linear decision surface
(Friedman, 1989; Wu et al., 1996).
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2. Method

In KFD, kernel trick is used to map the data into an implicit
feature space. In this way, the nonlinear relations with different
forms in the input data can be converted into linear ones indirectly
(Liu et al., 2004). Then, LDA can be applied in the feature space,
thereby yielding nonlinear decision surfaces in the input space. In
this process, the algorithm can actually be implemented in the
feature space by virtue of kernel trick, and therefore an explicit
mapping process is not required. To better present KFD from
simple to complex, we will introduce LDA first and then KFD.

2.1. Linear discriminant analysis (LDA)

LDA is a classical multivariate technique for both dimension
reduction and classification (Duda et al., 2001; Subasi and Gursoy,
2010). The data vectors will be transformed into a low dimensional
subspace so that the class centroids are spread out as much as
possible. In this subspace, LDA works as a simple prototype clas-
sifier with linear decision boundaries (Martínez and Kak, 2001).

Given a set of N centered samples (zero mean and unit var-
iance) ∈( ) x j

i p, where ( )x j
i is the j-th sample in the i-th class, and

there are p elements in vector ( )x j
i . Unless a special declaration,

vectors in this paper are all column vectors. ni is the number of
samples in the i-th class and it satisfies ∑ == n Ni

c
i1 , where c is the

number of classes. The transform process can be translated to find
several projection vectors and map the original data upon the
vectors. The mapped data meets the requirements of both max-
imizing the distance between classes and minimizing the distance
within classes. The requirements can be formulated as maximizing
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where Sw is the within-class scatter matrix, and Sb is the between-
class scatter matrix:
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It has been proven that solving the optimization problem is
equivalent to finding the largest eigenvectors of λ=S u S ub w , and

=w u u S u/ T
w . The classification ability of each projection vector

can be measured by the corresponding eigenvalue. When the ei-
genvalue is larger than the others, the contribution, which the
corresponding vector makes to spread out class centroids, is more
than the contributions of the other vectors. After obtaining the
projected new vectors, they can be employed to identify lithology
instead of the original ones by linear classifier.

Take well logs for example. Four logs are available, which are
gamma ray (GR), compensated neutron log (CNL), density (DEN)
and acoustic log (AC). There are five types of lithology and
then c¼5. For each sample, = ( ) =( ) GR CNL DEN AC ix , , , ,j

i T

… = …j n1, 2, , 5, 1, 2, , i and then p¼4.
Suppose that the number of eigenvectors is four in this ex-

ample, although it may be 3 or 2, or even 1. = ( )w w w ww , , , T1 11 12 13 14 ,
= ( )w w w ww , , , T

2 21 22 23 24 , = ( )w w w ww , , , T
3 31 32 33 34 and =w4

( )w w w w, , , T
41 42 43 44 are the eigenvectors corresponding to the ei-

genvalues λ λ λ λ λ λ λ λ( ≥ ≥ ≥ ), , ,1 2 3 4 1 2 3 4 respectively. In fact, the
number of eigenvectors is usually not more than both −c 1 and p.
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However, the first several elements can contain most of the clas-
sification features. To determine the number of elements used, the
contribution is often used. For instance, λ λ λ λ( + + )/k 1 2 3 is the
contribution of the k-th eigenvector. If λ λ λ λ( + + ) < threshold/1 1 2 3

and λ λ λ λ λ( + ) ( + + ) ≥ threshold/1 2 1 2 3 , then = ( )( ) z zz ,j
i LDA T

1 2 . In
practice, threshold is often more than 0.8. After the extracted fea-
tures are determined, the centroid of the i-th class can be ob-
tained, = ∑ =

( )m zi
LDA

n j
n

j
i1

1i

i . So far, the LDA model has been built.

For a sample with unknown lithology label, = ( )GR CNL DEN ACx , , , T .
Firstly, get the projected new vector = ( )z zz , T

1 2 . Here
= × + × + × + ×z GR w CNL w DEN w AC w1 11 12 13 14, = × +z GR w2 21

× + × + ×CNL w DEN w AC w22 23 24 .
Secondly, decide the lithology label according to the distance to

the class centroid:

= − ( )dist z m 4i
LDA

i
LDA

where disti is the distance between zLDA and the centroid of the i-
th class.

When distk is the smallest, it will be identified as the k-th
lithology.

2.2. Kernel Fisher discriminant analysis (KFD)

KFD was first proposed by Mika et al. for two-class classifica-
tion (Scholkopft and Mullert, 1999). Then Baudat and Anouar
(2000) improved it for multi-class classification and called it
general discriminant analysis (GDA). Afterwards KFD in many pa-
pers is mostly for multi-class classification (Kodipaka et al., 2007;
Cai et al., 2011; Chu et al., 2011; Li et al., 2003). Some papers also
call it KFDA (Wei and Wu, 2008; Jin et al., 2012). In this paper, the
term KFD is used. It enables solving both two-class and multi-class
classification problems.

2.2.1. Mathematical principle
In the pattern recognition theory, linearly non-separable pat-

terns in low-dimensional space can become linearly separable if
they are mapped into a high-dimensional space (Cover, 1965). In
particular, the original data in KFD are mapped into a feature space
by kernel trick. In this section, a detailed introduction to the
mathematical background of KFD will be provided.

For the data set ∈( ) x j
i p in Section 2.1 and a given nonlinear

mapping function ϕ, the input data space p can be mapped into a
feature space F, and then the images of the original samples under
the map ϕ are denoted as ϕ ( )( )x j

i . It is a column vector with t

elements. In fact both t and ϕ are difficult to determine and
usually unknown. For this problem, we will give a detailed ex-
planation how kernel trick solves it in the following text.

Based on that illustrated in Section 2.1, the features in the
feature space extracted by LDA are ϕ· ( ) = …ϕ ( ) k mw x , 1, 2, ,k j

i , and

{ | = … }ϕ k mw 1, 2, ,k is a set of generalized eigenvectors corre-
sponding to the first m largest generalized eigenvalues
λ{ | = … }i m1, 2, ,i obtained by maximizing ( )ϕ ϕ−S Sw b

1 , namely
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Here, ϕSw and ϕSb are respectively the within-class and between-
class scatter matrices defined in the feature space F.

From the theory of reproducing kernels (Aronszajn, 1950), any
solution ∈ϕ Fw must lie in the span of all training samples in F, i.e.

∑ ∑ αα ϕ= ( ) =
( )

ϕ

= =

( )w x Q
6i

c

j

n

ij j
i

1 1

i

where ϕ ϕ ϕ ϕ= [ ( ) ( ) … ( ) … ( )]( ) ( ) ( ) ( )Q x x x x, , , , ,n nc
c

1
1

2
1

1
1 and α α α α α= ( … … ), , , , ,n cnc

T
11 12 1 1 .

S. Dong et al. / Journal of Petroleum Science and Engineering 143 (2016) 95–10296



Download English Version:

https://daneshyari.com/en/article/1754572

Download Persian Version:

https://daneshyari.com/article/1754572

Daneshyari.com

https://daneshyari.com/en/article/1754572
https://daneshyari.com/article/1754572
https://daneshyari.com

