ELSEVIER

Contents lists available at ScienceDirect

Journal of Petroleum Science and Engineering

journal homepage: www.elsevier.com/locate/petrol

Rate forecasting during boundary-dominated multiphase flow: The rescaled exponential model

Miao Zhang, Madhu Singh, Luis F. Ayala*

The Pennsylvania State University, United States

ARTICLE INFO

Article history:
Received 18 October 2015
Received in revised form
23 January 2016
Accepted 15 February 2016
Available online 16 February 2016

Keywords:
Well performance
Boundary dominated flow
Multiphase flow
Rate forecasting
Exponential model

ABSTRACT

Well performance forecasting is an important analytical technique used for field development to guide economic decisions during the life of a reservoir. For the case of dry and liquid-rich gas wells, traditional well performance models are developed based on solving the resultant highly nonlinear gas flow equations via pseudo-pressure and pseudo-time linearization. In this study, we provide a straightforward, density-based alternative to traditional models. We show, as done previously for the case of dry gas wells (Ayala and Zhang, 2013; Zhang and Ayala, 2014a), that a rescaled exponential model is a rigorous decline solution that can be extended to liquid-rich gas wells producing under constant bottomhole-flowing-pressure (BHP) during boundary-dominated flow (BDF) and multiphase conditions. The proposed multiphase rescaled-exponential model is derived analytically from governing multiphase flow equations; comparisons between numerically simulated results and proposed analytical model for a variety of combinations of reservoir and fluid properties demonstrate that the proposed rescaled-exponential model is a valid and reliable forecast model for constant-BHP liquid-rich gas wells under BDF.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Modern well performance analysis techniques can trace their roots back to the work of Fetkovich (1980), who presented a group of well performance analysis type-curves generated through a combination of analytical solutions and Arps (1945) empirical developments. For the case of gas systems, strongly pressure-dependent fluid properties introduce significant complexities and non-linearities into the analysis. For such cases, the concepts of pseudo-pressure (Al-Hussainy et al., 1966) and pseudo-time (Agarwal, 1979; Fraim and Wattenbarger, 1987) have entered the analysis in order to account for these non-linearities in the gas flow performance equations. Palacio and Blasingame (1993) applied them to their dry-gas, single-phase well performance analysis technique and introduced the material-balance pseudo-time to account for variable rate/pressure conditions during boundary dominated flow (BDF).

For the analysis of multiphase flow in liquid-rich gas or gascondensate reservoirs, two-phase pseudo functions have also been developed to linearize the associated multiphase governing flow equations—in direct analogy to single-phase gas developments. O'Dell (1967) and Fussel (1973) used two-phase pseudo-pressure (m_{tp}) to predict gas condensate well performance through the gas rate deliverability equation. The two-phase pseudo-pressure, m_{tp} , is defined as:

$$m_{tp} = \int_{p_b}^{p} \left(\frac{k_{rg}}{\mu_g B_g} + R_s \frac{k_{ro}}{\mu_o B_o} \right) dp \tag{1}$$

where R_s is the solution gas-oil ratio, μ and B are the fluid viscosity and formation volume factors, respectively and k_r refers to relative permeability of oil and gas, denoted by the subscript 'o' and 'g' respectively. Jones and Raghavan (1988) implemented the twophase pseudo-pressure Eq. (1) in the development of well test analysis methods for gas-condensate reservoirs. Modifying the equation originally proposed by Evinger and Muskat (1942) for solution-gas-drive oil wells, Fevang and Whitson (1996) presented the pseudo-steady-state equation for gas-condensate wells using pseudo-pressures calculated from a pressure-saturation relationship obtained from the producing gas-oil-ratio (GOR). Honoring such calculation of two-phase pseudo-pressure, Sureshjani and Gerami (2011) proposed the two-phase pseudo-time, $t_{a,tp}$, as a function of gas and oil saturations, S_g and S_o , for gas-condensate reservoirs under variable rate/pressure conditions in a form similar to that used for dry gas reservoirs:

$$t_{a,tp}(t) = \frac{1}{m_{tp}(p_i)} \int_0^t \frac{dt}{\frac{\partial}{\partial m_{tp}} \left(\frac{S_g}{B_g} + R_s \frac{S_o}{B_o}\right)}$$
(2)

An analogy of the governing equation for gas-condensate flow with that of single phase liquid flow may be established when

 $^{\ ^{*}\}text{Corresponding author.}$

Nomenclature		r	radial distance, ft
		r_w	wellbore radius, ft
Α	reservoir area, ft ²	r_e	reservoir external radius, ft
$b_{D,PSS}$	pseudosteady state component	$r_{ ho}$	single-phase gas density drawdown ratio
B_g	gas formation volume factor, RB/SCF	$r_{ ho,tp}$	two-phase density drawdown ratio
B_o	oil formation volume factor, RB/STB	$r_{ ho,tp}^{*}$ S_g S_o	gas saturation
\overline{c}_g^*	equivalent gas compressibility, 1/psi	S_o	oil saturation
\overline{C}_g^* $\overline{\mu}_g^*$	equivalent gas compressibility at average reservoir	S_{wc}	connate water saturation
	condition, 1/psi	T	reservoir temperature, °F or °R
$D_i^{\ e}$	initial decline coefficient for dry gas rescaled ex-	T_{sc}	temperature at standard condition, °F or °R
	ponential model under full potential drawdown, 1/day	t	time, day
$D_{tp,i}^{e}$	two-phase initial decline coefficient for rescaled ex-	t_{DAd}	dimensionless time used in Arps' decline model
	ponential model, lbm/SCF /day	$t_{a,tp}$	two-phase pseudotime, day
G_i	original gas in place, SCF.	$t_{acr,tp}$	two-phase material-balance pseudo-time, day
G_p	cumulative gas production, SCF	V_g	gas phase velocity, (L/t)
h	reservoir thickness, ft	V_0	oil phase velocity, (L/t)
k	absolute permeability, mD	V_p	reservoir pore volume, ft ³
k_{rg}	gas relative permeability	z_{tp}	two-phase compressibility factor
k_{ro}	oil relative permeability		
m	pseudopressure, psi ² /cp	Greek	
m_{tp}	two-phase pseudopressure psi /cp		
$m_{tp,i}$	two-phase pseudopressure at initial condition, psi /cp	$\overline{\lambda}$	depletion-driven viscosity-compressibility ratio for
$m_{tp,wf}$	two-phase pseudopressure at wellbore condition, psi		dry gases, dimensionless
	/cp	$\overline{\lambda}_{tp}$	depletion-driven viscosity-compressibility ratio of
$m_{tp,re}$	two-phase pseudopressure at reservoir external		equivalent surface gas component during two-phase
	boundary condition, psi /cp		flow, dimensionless
\overline{m}_{tp}	two-phase pseudopressure at reservoir average con-	$\overline{\beta}$	time-averaged of the dry gas depletion parameter $\bar{\lambda}$,
	dition, psi /cp		dimensionless
n_i	initial hydrocarbon moles in place, lbmol	\overline{eta}_{tp}	depletion-driven time-averaged evolution of viscos-
p	pressure, psia		ity-compressibility ratio of equivalent gas component
\overline{p}	average reservoir pressure, psia		in two-phase flow $\overline{\lambda}_{tp}$, dimensionless
p_{i}	initial reservoir pressure, psia	$\rho_{\rm g}^*$	equivalent gas component molar density, lbmol/RB
p_{dew}	dewpoint pressure, psia	$ ho_{\!\!g}^* \ ho_{\!\!g,i}^*$	equivalent gas component molar density at initial re-
p_{sc}	pressure at standard condition, psia		servoir condition, lbmol/RB
p_{wf}	well bottom-hole pressure, psia	$ ho_{g,w\!f}^*$	equivalent gas component molar density at wellbore
q_{gi}^{e}	initial decline rate for dry gas re-scaled exponential		condition, lbmol/RB
- P	model under full potential drawdown, SCF/D	$\overline{ ho}_{g}^*$	equivalent gas component molar density at average
$q_{gtp,i}^{e}$	two-phase initial decline moles of gas component for	~	reservoir condition, lbmol/RB
	re-scaled exponential model, lbm/day	$ ho_{ m sc}^{ m g}$	equivalent gas component molar density at standard
$q_{ m gsc}$	surface gas rate, SCF/D		condition, lbmol/SCF
$q_{ m osc}$	surface oil rate, STB/D	ϕ	porosity
q_{Dd}	dimensionless rate used in Arps' decline model	$\mu_{ m g}$	gas viscosity, cp
R	universal gas constant	$\mu_0 \ \mu_g^*$	oil viscosity, cp
R_s	solution gas-oil-ratio, SCF/STB	μ_{g}^{*}	equivalent gas viscosity, cp
R_p	produced gas-oil-ratio, SCF/STB		μ
R_{ν}	volatile oil-gas-ratio, STB/SCF		

properly defined two-phase pseudo-functions—such as pseudo-pressure and pseudo-time are used. Besides the rigorously-derived two-phase pseudo-functions, other attempts have been made to simplify the calculation of two-phase pseudo-functions in production data analysis (PDA). For example, Sureshjani et al. (2014) proposed an empirically-defined two-phase pseudo-pressure and pseudo-time for gas condensate well by neglecting the condensate mobility term $\frac{R_S k_{ro}}{\mu_O B_O}$ in both equations (Eqs. (1) and 2). Arabloo et al. (2014) used two-phase Z-factor (Z_{tp}) (Hagoort, 1988) in their definition of pseudo-functions, which results in a two-phase pseudo-pressure and pseudo-time form, analogous to the dry-gas case.

Recently, Ayala and Zhang (2013) and Zhang and Ayala (2014a, 2014b) proved that dry gas well decline under constant bottomhole pressure can be successfully captured in terms of a re-scaled

exponential model:

$$q_{\rm gsc} = q_{\rm gi}^e \cdot r_\rho \cdot \overline{\lambda} \cdot \exp(-D_i^e \cdot \overline{\beta} t)$$
(3)

where $\bar{\lambda}$ and $\bar{\beta}$ are dimensionless rescaling parameters quantifying the effect of non-linearities (i.e., gas viscosity-compressibility dependencies with pressure) in the performance equation, r_{ρ} is the density drawdown ratio, q_{gi}^e is the initial decline rate, and D_i^g is the initial decline coefficient. The authors showed that this re-scaled exponential model can be rigorously and analytically derived for both constant and variable BHP conditions for single-phase flow. This work extends the single-phase model to multi-phase flow environments while attempting to maintain their simplicity and analogy. This is made possible by the use of a density-based material balance approach for liquid-rich gases (Zhang and Ayala,

Download English Version:

https://daneshyari.com/en/article/1754581

Download Persian Version:

https://daneshyari.com/article/1754581

<u>Daneshyari.com</u>