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a b s t r a c t

Parameterization based on truncated singular value decomposition (TSVD) of the dimensionless sensi-
tivity matrix has been shown to be an efficient approach for history matching. With TSVD para-
meterization, the search direction is computed as a linear combination of a few principal right singular
vectors. As the sensitivity matrix is not explicitly computed, this parameterization is appropriate for
large-scale history-matching problems. Moreover, previous work presented theoretical evidence that
TSVD of the dimensionless sensitivity matrix provides the optimal parameterization in terms of un-
certainty reduction. TSVD has been used in the randomized maximum likelihood (RML) framework to
generate multiple conditional realizations of reservoir models. In this work, we investigate the effect of
TSVD in the search direction obtained by the application of the Gauss–Newton and the Levenberg–
Marquardt (LM) methods. In particular, we show that the TSVD-based LM algorithm converges to ap-
propriate estimates because it gradually resolves the important features of the true model. We also
introduce an improved implementation of a TSVD-based LM algorithm for generating multiple realiza-
tions of reservoir models conditioned to production data. Our experiments indicate that the computa-
tional cost of the new implementation is on the order of 2/3 of the cost of the previous implementation.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

There is always uncertainty in the simulation models of petro-
leum reservoirs. Bayesian statistics provides a mathematical fra-
mework in which uncertainty can be described in terms of a
probability density function (pdf) (Tarantola, 2005). The problem of
describing uncertainty can then be replaced by a conceptually
simpler problem of sampling a posterior pdf. Sampling the posterior
pdf is equivalent to generating plausible realizations of the reservoir
model. However, even the sampling problem can be quite complex
and computationally expensive for reservoir applications. Markov
chain Monte Carlo (MCMC) (Hastings, 1970; Tierney, 1994) provides
a rigorous sampling method. However, MCMC is computationally
too demanding and its direct application to reservoir problems
seems not to be feasible with the current computational capabilities
(Tjelmeland et al., 1994; Hegstad and Omre, 1999; Oliver et al.,
1997), unless the size of the problem is small (Emerick and Rey-
nolds, 2013a) or it is applied in combination with some approx-
imation (proxy) for the likelihood (Emerick and Reynolds, 2012b).

The randomized maximum likelihood (RML) method was

introduced by Oliver et al. (1996) as a practical approximation of
MCMC for sampling in the context of reservoir applications. RML
samples correctly when the data is linearly related to the model
parameters. When the data–model relationship is nonlinear, RML
is not guaranteed to sample correctly. However, several compu-
tational experiments (Liu and Oliver, 2003; Reynolds et al., 1999;
Gao et al., 2006; Emerick and Reynolds, 2013a) have shown that
RML performs an adequate sampling in the nonlinear case. For
generating a realization of the posterior pdf with RML, an objective
function should be minimized using an optimization algorithm.
Hence, for generating Ne conditional reservoir models, Ne objective
functions should be minimized. These minimizations are challen-
ging optimization problems as history matching is usually ill-
posed and the number of unknown model parameters can be very
large. As a result, application of unsuited optimization algorithms
may fail to provide an acceptable sampling of the posterior pdf.

Application of the Gauss–Newton (GN) and the Levenberg–
Marquardt (LM) algorithms for solving the optimization problem
involved in the history matching has been studied extensively
(Reynolds et al., 1996; Abacioglu et al., 2001; Li et al., 2003; Ro-
drigues, 2006). Computing the GN or the LM search direction re-
quires an explicit computation of the sensitivity matrix, which
may not be feasible for large-scale problems, unless the number of
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data points or the number of model parameters is small. Hence,
many researches have attempted to introduce efficient para-
meterization techniques to reduce the number of parameters
when applying the GN or the LM algorithm.

Reynolds et al. (1996) used the subspace method in the GN al-
gorithm to reduce the size of the matrix problem in each of the GN
iterations for history matching problems. In the subspace method,
the search direction vector is expanded as a linear combination of a
few basis vectors. These vectors may be gradients of some sub-
objective functions, e.g., gradient of data mismatch term and gra-
dient of the model misfit part of the objective function. Abacioglu
et al. (2001) followed the work of Reynolds et al. (1996) with a more
detailed investigation. They applied both GN and LM algorithms
with the subspace method. They suggested that instead of using a
fixed number of subspace vectors, the number of subspace vectors
can be gradually increased. They presented a theoretical argument
that suggests the eigenvectors of the dimensionless matrix
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1 associated with the largest eigenvalues form an ideal
basis for parameterization; here G is the sensitivity matrix, CD is the
covariance matrix for the measurement errors and L is the lower
triangular matrix resulting from the Cholesky decomposition of the
prior covariance matrix, CM, which is written as =C LLM
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Abacioglu et al. (2001) did not use this approach in example pro-
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probably too expensive to be practical. The parameterization they
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the history matching search direction in terms of the right singular
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gular vectors of GD, and the eigenvalues of −L G C GLT T
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1 are the squares
of the singular values of GD (Tavakoli and Reynolds, 2010). Abacioglu
et al. (2001) observed that when applying the LM algorithm with
parameterization, the initial rate of reduction in the objective
function is largely independent of the number of subspace vectors.

Rodrigues (2006) applied a history matching procedure where
the change in the vector of model parameters over a GN iteration
is expressed as a linear combination of a few right singular vectors
of GD. To obtain the singular vectors corresponding to the largest
singular values of GD, he used the Lanczos algorithm (Golub and
van Loan, 1989; Vogel and Wade, 1994). The main advantage of
this procedure comes from the fact that Lanczos algorithm only
requires the product of G times a vector and GT times a vector. The
first product can be efficiently computed with the gradient-si-
mulator method (Anterion et al., 1989) and the second product can
be computed with one adjoint solution (Li et al., 2003).

Tavakoli and Reynolds (2010) used the right singular vectors of
GD with the LM algorithm. Moreover, they presented a theoretical
argument that suggests the principal right singular vectors of GD
form an optimal basis of parameterization, as eliminating those
corresponding to smaller singular values has a negligible effect on
the reduction of uncertainty obtained by conditioning a reservoir
model to dynamic data. In their results, they obtained more rea-
sonable permeability fields with the proposed TSVD para-
meterization than they obtained with application of a quasi-
Newton method (LBFGS) (Nocedal, 1980). The effect of the TSVD
parameterization is twofold: first, it makes the application of GN
and LM methods computationally feasible for large-scale models;
second, the parameterization introduces additional regularization
which alleviates the ill-posedness of the inverse problem. Later,
Dickstein et al. (2010) used a TSVD parameterization in the GN
algorithm to condition the permeability fields to production and
time-lapse seismic data. In their synthetic example, in the absence
of seismic data, when they used a fixed number of singular triplets

( )25 with the GN algorithm, the resulting model was very rough,
giving a poor representation of the reservoir, although the data
matches were very good. However, they obtained good re-
presentations of the model starting with a few number of singular
triplets and gradually increasing this number as iteration proceeds.

Li et al. (2003) applied the GN algorithm and a modified LM
algorithm to generate the MAP estimate conditioned to pressure
data for a simple 2D synthetic reservoir. In their results, the MAP
estimate generated from the GN is very rough and far from the
true model. They concluded that the modified LM algorithm is
more reliable for obtaining good estimates of model parameters,
because by using a very high value of the LM parameter at early
iterations, the changes in model parameters are damped. Although
they did not use a parameterization and they explicitly computed
the sensitivity matrix in their implementation, their comparison of
the results of the GN and the LM is in agreement with the results
of Dickstein et al. (2010) and Tavakoli and Reynolds (2010).

Tavakoli and Reynolds (2011) used the TSVD parameterization
in RML framework to simultaneously generate an ensemble of
realizations of the reservoir model. They named the resulting al-
gorithm SVD-EnRML (SVD-Ensemble-RML) and applied for history
matching 2D permeability fields. Shirangi (2014) extended the
SVD-EnRML algorithm for the simulation of porosity and perme-
ability fields of 3D reservoir models, and also provided a modified
algorithm to improve the computational efficiency. At each itera-
tion of SVD-EnRML, a TSVD of GD corresponding to a particular
realizations (typically the MAP) is computed and used to update
all realizations of the ensemble. Hence, compared to the original
TSVD-based method (Tavakoli and Reynolds, 2010), the main
source of efficiency of the SVD-EnRML is the fact that the same set
of singular triplets is used to simultaneously minimize the objec-
tive functions of Ne realizations.

This paper has two main contributions. As the first contribu-
tion, we analyze the difference of the GN and the LM search di-
rections when solving the history matching problem. Our analysis
will provide more insight on why the LM algorithm provides ap-
propriate solutions to the history matching problem (as observed
by Tavakoli and Reynolds, 2010; Li et al., 2003; Abacioglu et al.,
2001), while the GN algorithm may converge to poor/rough so-
lutions (as observed by Dickstein et al., 2010; Li et al., 2003). We
also provide a GN version of the SVD-EnRML algorithm that can be
successfully applied to generate multiple realizations of the re-
servoir model. The second contribution of this work is that we
introduce an inner loop procedure to improve computational
performance of the LM-based SVD-EnRML. The improved algo-
rithm is applied to 2D and 3D example problems.

The rest of this paper is outlined as follows. In the following
section, we briefly explain the RML method for generating an
approximate sampling of the posterior pdf. After that, we review
the SVD-EnRML method. In the section after that, we compare GN
and LM versions of the SVD-EnRML and investigate the effect of
TSVD in the search direction. Then, we introduce the improved
SVD-EnRML implementation, followed by two numerical ex-
amples. The last section of the paper summarizes our conclusions.
We also present three appendix sections with throughout de-
scriptions of the main algorithms discussed in this paper.

2. Sampling the posterior pdf with the randomized maximum
likelihood method

Throughout, m denotes the Nm-dimensional vector of model
parameters, which includes the unknown reservoir rock properties.
When the prior geology is described in terms of the prior mean, mpr,
and the prior ×N Nm m-dimensional covariance matrix, CM, it is well-
known that the maximum a posteriori estimate (MAP) (Oliver et al.,
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