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a b s t r a c t

This paper presents an analytical solution of a non-self-similar, two-phase, multi-component problem of
polymer slug injection with varying water salinity (ionic strength) in oil reservoirs. The non-Newtonian
properties of polymers are incorporated into the fractional flow, yielding the velocity dependency of the
fractional-flow function. Using the Lagrangian coordinate instead of time allows splitting the initial
system (nþ1�nþ1) into a n�n system for concentrations and one scalar hyperbolic equation for phase
saturation, which allows for full integration of the non-self-similar problem of wave interactions. The
solution includes implicit formulae for saturation, polymer, and salt concentrations and front trajectories
of the components. The solution allows determining the slug size of the low-salinity water that prevents
the contact between the polymer and the high-salinity water.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

Polymer flooding aims at improving sweep efficiency of the
water displacement process by increasing the mobility ratio be-
tween the displacing agent and the in-situ oil. This is achieved by
adding a polymer to the aqueous phase. The rheology of the
polymer solution depends on parameters such as polymer con-
centration, velocity, and salt concentration. For example, if poly-
mer concentration is held constant, the viscosity of a polymer
solution increases as salt concentration decreases. This means that
for given oil viscosity target, potentially less polymer would be
required to maintain mobility control as salinity decreases (Sorbie,
1991). Furthermore, it has been observed that more oil is released
from rocks when the salinity of the aqueous phase is reduced. This
is mainly attributed to modifications in the wetting state of the
rock surface among other mechanisms (Lager et al., 2008; Mahani
et al., 2015). This implies that the combined effect of low-salinity
water and polymer can in principle be utilized to improve oil re-
covery in economically and operationally favourable conditions. To
minimize the cost of low-salinity polymer (LSP) injection, usually a
slug (fraction of the reservoir pore volume) of polymer is injected
and then followed by one or more slugs with reduced polymer
concentration and, finally, by a water drive.

Effects of the polymer and of lowering the salinity can be
modelled through modifying the fractional-flow functions: addi-
tion of polymer increases viscosity of the displacing agent, and
lowering the salinity affects the relative permeability parameters
(Mohammadi and Gary, 2012). Analytical methods are useful in
understanding the underlying physics of many enhanced oil re-
covery processes (Pope, 1980; Bedrikovetsky, 1993; Lake, 1989).
These methods can also be used to check the accuracy of the nu-
merical schemes that are employed for large-scale simulations.
Multiple discontinuities in the solutions of multi-component slug
injections typically create major difficulties in numerical model-
ling, whereas the analytical solutions provide trajectories for the
multiple shocks and the parameter jumps across the trajectories.
Moreover, one-dimensional analytical models form the basis for
streamline and front-track simulators of three-dimensional flows
in heterogeneous formations (Ewing, 1983; Holden and Risebro,
2002).

Continuous injection of a fluid having a constant composition
into a reservoir initially saturated by another fluid with a constant
composition corresponds to corresponds to so-called Riemann
problems, with initial conditions corresponding to the reservoir
fluid saturation and composition, and boundary conditions of the
injected fluid fractional flow and composition. The Riemann so-
lutions are self-similar (Gel'fand, 1959; Courant and Friedrichs,
1976), and depend on the group ξ¼x/t. The solutions contain in-
dividual discontinuities of each component, and can exhibit
chromatographic separation of the components. Numerous
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authors have provided solutions for one- and multi-component,
two-phase flow systems that allow for different kinds of de-
pendencies of parameters (De Nevers, 1964; Claridge and Bondor,
1974; Helfferich, 1981; Hirasaki, 1981; Braginskaya and Entov,
1980).

Johansen and Winther (1988) and Johansen et al. (1989) solved
the Riemann problem for a multi-component, two-phase system
by projecting it onto the solution of a single-phase problem. The
authors prove that the direct projection transforms all elementary
waves of two-phase system into those for a single-phase system.
So, the solution process consists of finding a solution for one-
phase flow and extending it to two-phase flow. The projection
principle allows for algorithmic integration of an arbitrary Rie-
mann problem for two-phase multi-component with adsorption,
based on the corresponding solute transport problem for a single-
phase flow. However, the projection is valid for Riemann problems
only: the two-phase flow solution with non-constant initial or
boundary conditions cannot be mapped onto the corresponding
one-phase-flow solution.

Injection of multi-component slugs corresponds to non-self-
similar solutions. The qualitative phase plane with characteristics
is presented in (Fayers, 1962) for sequential displacement of oil by
intercalated slugs of cold and hot water. The exact integration is
achieved by decomposition of the problem with piece-wise-con-
stant initial and boundary conditions into local Riemann problems
and solution of interactions of the elementary waves (Bed-
rikovetsky, 1982, 1993). Integration of the conservation law over
the invariant contours yields the exact solutions with explicit
formulae for trajectories of curvilinear fronts and for saturation
and concentration distributions. In the simplified case, where ad-
sorption of a component is a function of its own concentration
only, the exact integration shows that the multi-component slugs
interact after the injection and finally separate into single-com-
ponent slugs moving in order of decreasing the sorption derivative
values, similar to Rhee et al. (1998) for one-phase flows. Never-
theless, for the general case, where the adsorbed concentrations

depend on the concentrations of all components, the analytical
solution is not available in the literature.

Pires et al. (2006) and Borazjani et al. (2016) show that the
introduction of Lagrangian coordinate φ (stream function) asso-
ciated with mass conservation for water in n-component two-
phase flow problems and using it as an independent variable in-
stead of time t allows separating the (nþ1)� (nþ1) hyperbolic
system into an n�n auxiliary one-phase system and one scalar
equation (so called lifting) for two-phase flow. The auxiliary sys-
tem and the lifting equation are the results of transformation of
conservation laws for water and for all components, respectively,
in co-ordinates (x, φ). In various cases, where the auxiliary system
allows for an analytical solution, the general system is reduced to
the solution of a single scalar equation (Pires et al., 2006). In
contrast to direct projection onto the one-phase solution that is
valid for Riemann problems only (Johansen and Winther, 1988;
Johansen et al., 1989), this mapping results in splitting for any
initial and boundary-value problems.

Generally, the solution of the lifting equation is obtained nu-
merically (Vicente et al., 2014). However, for the case of linear
adsorption isotherms, even with the Henry's constants depending
on other concentrations, the lifting problem allows for exact so-
lution (Borazjani et al., 2014).

In this paper the splitting method presented by Pires et al.
(2006) is applied for hyperbolic systems corresponding to two-
phase multi-component flows in the reservoir scale approxima-
tion. Yet, recently the splitting method has been extended for two-
phase multicomponent systems of parabolic PDEs accounting for
capillary pressure and non-equilibrium phase transitions and
chemical reactions (Borazjani et al., 2016).

The objective of this work is to provide exact solutions based
on the mapping presented in Pires et al. (2006) for the cases when
the displacing aqueous phase contains varying viscosity and sali-
nity. Our special focus is to describe the physics of the process
when a slug of low-salinity polymer is followed by injection of
polymer-free aqueous solutions. The adsorption of the chemical

Nomenclature

a concentration of adsorbed polymer
c polymer concentration in water (g/m3)
cs salt concentration in water (g/m3)
cs

D salt concentration in the drive (g/m3)
D shock speed for (x, t) co-ordinates
f water fractional flow
H power law coefficient (Pa sn)
K absolute permeability (m2)
kr relative permeability of liquid phase
L reservoir size (m)
n power-law exponential index
p pressure (Pa)
S water saturation
t time
RF recovery factor
u total velocity (m/s)
uw aqueous phase velocity (m/s)
V shock speed in (x, φ) co-ordinate
Vp polymer slug volume per unit area (m3/m2)
x coordinate

Greek letters

Γ Henry's polymer sorption coefficient

η self-similar coordinate φ/x
κ Bulk power law coefficient (Pa sn)
μ apparent viscosity (Pa s)
ϕ porosity of porous media
ξ self-similar coordinate x/t
φ potential function

Subscripts

H high salinity water
L low salinity water
o oil
s salt
w water

Superscripts

D drive condition
I initial condition
J injection condition
þ value ahead of the shock
� value behind the shock
* intermediate point
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