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a b s t r a c t

Ensemble-based methods have gained popularity as reservoir history-matching techniques. The ad-
vantages typically attributed to these methods include the possibility of adjusting a large number of
model parameters at a reasonable computational cost, the generation of several alternative models
conditioned to data and the ease of implementation. In fact, it is straightforward to adapt these methods
to handle different types of data and model variables. Moreover, they are easily coupled with commercial
reservoir simulators. Among these methods, the ensemble Kalman filter (EnKF) is by far the most in-
vestigated. Iterative forms of the ensemble smoother (ES), on the other hand, are less widespread in the
literature. However, ensemble smoothers are much better suited to practical history-matching applica-
tions, because they do not require updating dynamical (state) variables and consequently avoid the
frequent simulation restarts required by EnKF. This paper presents the results of an investigation on the
performance of a variant of ES, namely, ensemble smoother with multiple data assimilation (ES-MDA), to
history match production and seismic data of a real field. The paper discusses the quality of the data
matches, the plausibility of the history matched models, the ability of the posterior ensemble to assess
the uncertainty in the forecasted water production, the effect of the number of iterations and localiza-
tion. The paper also includes two appendix sections. The first one presents two alternative im-
plementations of the ES-MDA method. The second appendix presents the matrix operations for an ef-
ficient implementation of the analysis.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

In the data assimilation literature, the term “ensemble-based
methods” is used to refer to a class of Monte Carlo implementa-
tions of methods inspired in the Kalman filter (KF) (Kalman, 1960).
Among these methods, the ensemble Kalman filter (EnKF) is the
most popular. Since its introduction by Evensen (1994), the
number of publications about EnKF became quite extensive. EnKF
has been successfully applied in several areas including oceano-
graphy (Bertino et al., 2003), atmospheric modeling (Whitaker
et al., 2008), weather prediction (Houtekamer and Mitchell, 2005)
and hydrology (Reichle et al., 2002). The first application for re-
servoir history matching was presented by Nævdal et al. (2002).
Aanonsen et al. (2009) present a review of the main developments
and applications of EnKF in history-matching problems from 2002
to early 2009.

However, the sequential assimilation scheme of EnKF creates
some inconveniences when applied to practical history-matching

problems. The reservoir simulation restarts required by EnKF in-
crease significantly the computational cost of the data assimila-
tion. This fact is particularly evident when simulations are dis-
tributed in a cluster of computers. Moreover, there may be in-
consistency between updated model parameters and updated
states (Thulin et al., 2007), which deteriorates the performance of
the data matches and introduces convergence problems in the
reservoir simulations. One alternative to EnKF is the ensemble
smoother (ES) (van Leeuwen and Evensen, 1996; Skjervheim et al.,
2011). In ES, all data are assimilated simultaneously in a single
update. Therefore, there is no need for simulation restarts, which
makes ES more attractive for practical history-matching applica-
tions. Unfortunately, the single update scheme of ES seems not to
be sufficient to properly condition reservoir models to dynamic
data (Chen and Oliver, 2012; Emerick and Reynolds, 2013b,c). This
fact motivated the development of iterative forms of ES (Chen and
Oliver, 2012, 2013; Emerick and Reynolds, 2013b).

In the reservoir history-matching literature, there is a current
trend of integrating different parts of the reservoir modeling
process (e.g., seismic, structural, geological modeling and flow si-
mulation) in a single workflow (Zachariassen et al., 2011). This
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kind of workflow is sometimes called “the big-loop approach.” The
big-loop approach requires the integration of different geomo-
deling softwares and it may include upscaling of the rock prop-
erties. Therefore, the use of sequential data assimilation becomes
very inconvenient and time consuming, making iterative
smoothers much more suitable alternatives.

Nowadays, the number of publications about ensemble-based
methods applied to reservoir history matching is quite extensive.
In most of these publications, EnKF is tested against synthetic
reservoir problems. The number of publications with field appli-
cations is much more restricted, although it is continuously
growing. Some examples of field applications of ensemble-based
methods for history matching can be found in Skjervheim et al.
(2007), Bianco et al. (2007), Evensen et al. (2007), Haugen et al.
(2008), Cominelli et al. (2009), Zhang and Oliver (2011), Emerick
and Reynolds (2011a, 2013c), and Chen and Oliver (2014)). Despite
the aforementioned advantages of ES over EnKF for history
matching, the number of publications with ensemble smoothers is
still limited. One of the reasons is the fact that iterative smoothers
are relatively new in the literature and not well-known. In this
sense, one of the goals of the presented paper is to fill this gap.

This paper presents an evaluation of the performance of a
variant of ES, namely, ensemble smoother with multiple data as-
similation (ES-MDA) (Emerick and Reynolds, 2013b), to history
match production and seismic data in a real reservoir problem.
The paper is organized as follows: the next section presents the
general formulation of ensemble-based methods with particular
attention to ES-MDA, where it presents a derivation based directly
on Bayes' rule. The section after that describes the field case fol-
lowed by a section presenting the results of assimilation of pro-
duction data. In this section, some aspects of the data assimilation
are analyzed, including the quality of the data match, model
plausibility, ability to evaluate the uncertainty in water production
forecasts, the effect of the number of iterations and localization.
The section after that presents the results of assimilation of seis-
mic data (3D and 4D) in conjunction with production data. In this
section, the ability of ES-MDA to assimilate a large amount of data
is investigated. The last section of the paper presents the conclu-
sions. The paper also includes two appendix sections. The first one
presents two alternative algorithms for ES-MDA. The first algo-
rithm corresponds to the standard ES-MDA, in which the number
of data assimilations and inflation coefficients are selected in ad-
vance. In the second algorithm, the number of data assimilations
and inflation coefficients are automatically selected in accordance
with the evolution of the data-mismatch objective function. The
second appendix describes the matrix operations for an efficient
implementation of the ES analysis in case of assimilation of large
number of measurements.

2. Ensemble-based methods

In the ensemble-based methods, an ensemble of states is used
to approximate the first two moments of the distribution. Here,
the term “states” refers to the unknown model properties of in-
terest in the data assimilation. However, in the history-matching

literature it is usual to make a distinction between model para-
meters and states. The term “model parameter” is used to refer to
a reservoir rock property such as porosity or permeability. “State,”
on the other hand, is used to refer to a dynamic variable, such as
pressure or fluid saturation. This distinction is particularly im-
portant to emphasize the difference between filter and smoother.
In the filter, data are assimilated sequentially in time. Therefore, it
is necessary to update both parameters and states, so reservoir
simulations can be restarted from the current time step. In the
smoother, however, because all data are assimilated simulta-
neously, there is no need to update state variables. This fact makes
the smoothers very similar to the traditional “assisted history-
matching methods” present in the reservoir literature (Oliver et al.,
2008).

There is a clear connection between ensemble-based methods
and Bayesian statistics. In fact, the KF can be derived from Bayes'
rule with the assumptions that the prior model follows a Gaussian
distribution, measurement and model errors are additive also
following Gaussian distributions and the relationship between
model and predicted data is linear (Evensen, 2007). In this sense,
the initial ensemble corresponds to samples of the prior dis-
tribution. Then, these samples are updated to incorporate the
measurements. Ideally the updated samples will be closely dis-
tributed according to the posterior distribution. It is possible to
prove that the updated ensemble samples asymptotically correct
the posterior distribution for the linear-Gaussian case as the size of
the ensemble goes to infinity. For nonlinear problems, such as
history matching, there is no guarantee that ensemble-based
methods sample the posterior PDF adequately. Actually, it is rela-
tively easy to find synthetic test problems in which these methods
provide very poor sampling. This is particularly evident in heavily
skewed and multimodal distributions. Nevertheless, there are also
computational evidence that ensemble-based methods can obtain
“acceptable” sampling in reservoir problems. For example, in
Emerick and Reynolds (2013a), the ES-MDA method was able to
approximate the results of a rigorous MCMC sampling for a very
simple, but highly nonlinear reservoir problem. Unfortunately, ri-
gourous methods such as MCMC and rejection sampling are
computationally too demanding for large-scale field applications,
except if one uses a proxy to approximate the reservoir response
(Emerick and Reynolds, 2012b) or parameterize the problem in
terms of very few uncertainty variables (Ma et al., 2008). In both
cases, however, it is no longer possible to guarantee the correct
sampling. On the other hand, reservoir engineers face everyday
the problem of forecasting production in their fields and providing
uncertainty ranges for these forecasts, so they can manage risk.
Therefore, less computationally demanding approximate solu-
tions, such as ensemble-based data assimilation, are very im-
portant in practice.

In the data assimilation literature, the process of updating
model parameters and state variables is typically referred to as
analysis. The analysis for EnKF and ES is almost identical. In the
following, the analysis equation is presented in terms only of a
vector of models parameters, m, which is the case for ES. In ES, the
jth forecasted vector m j

f is updated using

Table 1
Prior distributions of water relative permeability parameters and the natural
logarithm of fault transmissibilities, ( )xln .

Parameter Distribution Mean Standard deviation

krw,max Normal 0.25 0.03

ew Normal 2.30 0.50
( )xln Normal �2.30 1.0

Table 2
Measurement errors adopted for observed production data.

Data Measurement error

Oil production rate 10% of the data value (minimum of 1 m3/d)
Water production rate 15% of the data value (minimum of 1 m3/d)
Gas–oil ratio 20% of data the value (minimum of 10 m3/m3)
Bottom-hole pressure 500 kPa
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