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a b s t r a c t

In this paper we propose a modified multiscale finite element method for nonlinear flow simulations in
heterogeneous porous media. The main idea of the method is to use the global fine scale solution to
determine the boundary conditions of the multiscale basis functions. When solving the time-dependent
problems, the equations of standard MsFEM need to be solved many times for different pressure profiles.
Then, we propose an adaptive criterion to determine if the basis functions need to be updated. The
accuracy and the robustness of the modified MsFEM are shown through several examples. In the first two
examples, we consider single phase flow in consideration of pressure sensitivity and unsaturated flow,
and then compare the results solved by the finite element method. The results show that the multiscale
method is accurate and robust, while using significantly less CPU time than finite element method. Then,
we use the modified MsFEM to compute two phase flow in low permeability reservoirs. The results show
that the greater the staring pressure gradient is, the greater the pressure drop is, and the greater the
staring pressure gradient is, the smaller the swept area is. All the results indicate that modified the
MsFEM offers a promising path towards direct simulation of nonl-linear flows in porous media.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

A large number of scientific problems in a variety of areas in-
volve nonlinearity. Nonlinear problems widely exist in different
engineering practices, such as subsurface hydrology, civil en-
gineering, petroleum engineering. Multiphase flow in low per-
meability reservoirs and unsaturated flow in heterogeneous por-
ous media are examples of this type.

Low permeability reservoirs have become one of the main
sources for oil and gas production. A lot of low permeability flow
tests and production practice show that (Miller and Low, 1963; Lv
et al., 2002; Wan et al., 2011): the minimum starting pressure
gradient exists in the oil gas flow. Fluid in low permeability re-
servoirs must have an additional pressure gradient to overcome
the rock surface adsorbed film to flow, the additional pressure
gradient is known as the starting pressure gradient. The percola-
tion curve deviates from the classical Darcy's law, with significant
nonlinear characteristics. Aiming at this phenomenon, many ex-
perts have proposed many kinds of nonlinear percolation models
(Huang, 1997; Xiao et al., 2007), and carried out the corresponding
numerical simulation (Guo et al., 2004; Han et al., 2004; Xu et al.,
2007; Yang et al., 2001). In general, finite difference techniques

have been used in the petroleum industry for reservoir simulation
applications. Such methods are based on the physical quantities of
the central point of the adjacent element. It uses these quantities
to construct numerical scheme, and then combined with the
percolation curve to solve the problems. However, for the het-
erogeneous reservoir with low permeability, the percolation
model of different elements are not the same. Numerical simula-
tion must obtain the pressure gradient of each element, and select
the corresponding flow model. Thus, the finite difference method
is unable to meet the requirements. Jim Douglas and Todd DuPont
(Douglas et al., 1969; Settari et al., 1977) made the innovative
suggestion of using finite element techniques in nonlinear pro-
blems. Recently, a number of papers on the finite element meth-
ods have been published (Han et al., 2004; Zhao, 2006; Zhi et al.,
2012; Tang et al., 2005). Compared to the finite difference meth-
ods, finite element methods are suitable for the problems with
complex boundaries, high-order difference equation, and it can
also be used in the heterogonous reservoir. Despite such favorable
properties, use of the finite element methods in multiscale pro-
blems is severely restricted by the large computation and memory
overheads. Thus, it is not surprising that researchers are looking
for a method with a structure of finite element method to solve
multiscale nonlinear problems.

Nonlinear flow in porous media are affected by heterogeneity
of subsurface formations spanning over many scales (Tang et al.,
2005; Huang et al., 2011; Weinan and Engquist, 2003). The
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heterogeneity is often represented by the multiscale fluctuations
in the permeability (hydraulic conductivity) of the porous media
(Hou and Wu, 1997). As shown in Fig. 1.1, the multiscale hetero-
geneities occur at a variety of scales, from microscopic to field
scale. Therefore, the incorporation of the multiscale structure of
the solution at all scales is important for numerical simulation.
However, it is difficult to resolve numerically all of the scales even
with supercomputers. For flow simulation, the geological model
commonly include millions of grid blocks involved with each block
having a dimension of tens of meters, whereas the permeability is
at a scale of several centimeters (McCarthy, 1995). If using tradi-
tional finite element method or finite difference method (Huang
et al., 2011; Rutqvist et al., 2002; Zhang, 2005) to solve such
problems, it requires a tremendous amount of computer memory
and CPU time and they can easily exceed the limit of today's
computing resources. In practical calculation, typically, upscaling
or multiscale methods are employed for such systems (Rizzi, 1976;
Desbarats, 1998; Kueper and McWhorter, 1992; Efendiev and Hou,
2009). The main idea of upscaling methods is to form coarse-scale
equations with a prescribed analytical form. These upscaling
methods have proved quite successful. However, it is not possible
to have a priori estimates of the errors that are present when
complex flow processes are investigated using coarse models
constructed via simplified settings. In multiscale methods, the
fine-scale information is carried throughout the simulation and
the coarse-scale equations are generally not expressed analytically,
but rather formed and solved numerically. A number of multiscale
numerical methods (Hou et al., 1999; Hughes et al., 1998; Efendiev
and Hou, 2002; Aarnes et al., 2006; Juanes and Patzek, 2005; Chen
and Hou, 2003) have been presented, such as dual mesh method,
heterogeneous multiscale method (HMM) (Weinan and Engquist,

2003), multiscale finite element method (MsFEM) (Hou and Wu,
1997) and variational multiscale method (Hughes et al., 1998).
Multiscale methods have proved to be capable of handling in-
dustry-standard complexity with respect to both grid re-
presentation and flow physics.

Traditional finite element method (FEM) was mentioned in
nineteen fifties and sixties. Briefly, FEM is obtained in four steps:
(1) discretize the domain into finitely many elements, and assume
that all the elements are homogeneous; (2) construct finite ele-
ment basis functions required to describe the physical character-
istics of elements; (3) obtain the finite element formulation using
various methods such as Galerkin method, and then assemble the
local element equations into a global form and impose the
boundary conditions; (4) Solve the global formulation (Reddy,
2006). Generally, the basis functions are linear or quadratic. When
the element is heterogeneous and the variation of the physical
field is nonlinear, the local element information is disregarded if
using the polynomial basis functions, and this can lead to large
errors (see Fig. 1.2(b)). If discretizing the domain more finely, the
size of the discrete problem will be increased and it is more
computationally expensive. Therefore, the application of FEM has
been limited by the basis functions required to adequately de-
scribe the real physical processes.

MsFEM, which can be traced back to the work presented
by Babuška and Osborn (1983) and Babuška et al. (1994), is first
introduced by Hou and Wu (1997). This method is based on the
construction of multiscale finite element basis functions that are
adaptive to the local property of the differential operator, and was
introduced as a tool to solve elliptic partial differential equations
with multiscale solutions. It could capture the small effect on the
large scale without resolving all the small scale details. Thus, it

Fig. 1.1. Schemaic description of heterogeneities of different scales (Zhi et al., 2012).
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