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a b s t r a c t

Buckley–Leverett displacement equations have been derived strictly from linear flow systems, and have
been verified by linear flow experiments only. This paper presents analytical algorithms to calculate
recovery factors for radial flow systems, which is expected to be more accurate for peripheral water-
flooding reservoirs.

The proposed equations have been verified with field data. The original Buckley–Leverett equation
generally results in much lower recovery factors that barely match the well cumulative production at
interest. Consequently, the estimated ultimate recovery (EUR) by volumetric methods tends to be low. As
a result, the production projection according to volumetric EUR is not reasonable in comparing to the
historical performance. The proposed analytical model improves the prediction of reservoir performance.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

The volumetric method is one of the most important methods
used for reserve estimation when combined with the waterflood
frontal advance equation from Buckley–Leverett (1942) to calcu-
late recovery factor. Welge (1952) proposed a tangent construction
method to supplement Buckley–Leverett to estimate the water
saturation, water fraction at the water front, and recovery factor.
Stiles (1949) investigated multilayer-reservoir displacements as-
suming the displacement velocity in a layer to be proportional to
its absolute permeability. Dykstra and Parsons (1950) developed a
multi-permeability model for non-communicating layers without
cross-flow. Hearn (1971) derived expressions for communicating
stratified reservoirs using the pseudo-relative permeability func-
tions. Smith (1992) analyzed the impact on fractal flow and frontal
displacement under various mechanisms of pressure support, gas
saturation control, mixed phase flow, errors, and voidage calcula-
tions. El-Khatib (1999a, 1999b) advanced the closed-form analy-
tical solution for communicating stratified systems with log-nor-
mal permeability distributions. Aziz (2011) performed a study to
investigate the impact of wettability alternation on recovery factor.
Fassihi et al. (1997) presented a study on the improved recovery by
air injection, and asserted the produced-gas analysis can be used
to estimate NGL capture efficiency. Research pioneers have im-
proved the methodology to estimate the performance for water-
flooded reservoirs, and numerous textbooks (Green and Willhite,

1998, 1986; Lake, 1994, 2007) have summarized and highlighted
those methods.

Since 1950's, industry has tried various water injection patterns
whose displacements are non-linear. Kimbler and Caudle (1964)
and Watson et al. (1964) have investigated nine-spot injection
pattern. Caudle et al. (1968) studied four-spot injection pattern.
Recently, Jones et al. (1997) performed sensitivity analysis on the
waterflooding patterns in a giant carbonate oil reservoir in North
Kuwait by numerical simulation. El-Khatib (1999) developed a
new mathematical model for waterflooding performance calcula-
tion in five-spot pattern reservoirs. Zakirov et al. (2012) developed
an approach for pattern optimization of water injection and ap-
plied it in a viscous oil field. Besides those cited works, many
papers have discussed various waterflooding in non-linear pat-
terns. However, to the best of our knowledge, all these practices
are based on the linear displacement theory. Undoubtedly, the
Buckley–Leverett method has been well recognized and success-
fully verified by experiments conducted in linear displacement
systems, but this method has also shown major limitations in
predicting the performance of multiple water injectors drilled to
enhance oil recovery around the producers, especially for mature
fields. The modified analytical equations proposed herein address
radial flow patterns to more appropriately model these operations.

This paper presents a modified set of equations to calculate the
waterflood frontal advance for peripheral waterflooding systems,
which uses parallel derivation approaches of Buckley–Leverett
method. This modified radial displacement model generally pro-
vides higher recovery factors and supplements conventional
methods in the determination of reservoir performance.

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/petrol

Journal of Petroleum Science and Engineering

http://dx.doi.org/10.1016/j.petrol.2015.11.034
0920-4105/& 2015 Elsevier B.V. All rights reserved.

n Corresponding author.
E-mail address: he_zhang@ryderscott.com (H. Zhang).

Journal of Petroleum Science and Engineering 137 (2016) 250–257

www.sciencedirect.com/science/journal/09204105
www.elsevier.com/locate/petrol
http://dx.doi.org/10.1016/j.petrol.2015.11.034
http://dx.doi.org/10.1016/j.petrol.2015.11.034
http://dx.doi.org/10.1016/j.petrol.2015.11.034
http://crossmark.crossref.org/dialog/?doi=10.1016/j.petrol.2015.11.034&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.petrol.2015.11.034&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.petrol.2015.11.034&domain=pdf
mailto:he_zhang@ryderscott.com
http://dx.doi.org/10.1016/j.petrol.2015.11.034


2. Derivation of fractional flow in a radial reservoir system

Fig. 1 shows a circular reservoir with a well located in the
center. A strong peripheral water drive is created by surrounded
injectors or strong side aquifer supports, so the water displaces oil
as peripheral fractional flow. Fig. 2 illustrates the actual flow line
and pressure distribution in reservoir. The following assumptions
are made in our derivations:

1) A circular reservoir with constant height.
2) Homogeneous reservoir rock properties.
3) Oil and water two-phase flow in the reservoir.
4) Constant reservoir temperature.
5) All rock properties are independent of pressure.
6) Constant oil and water viscosities during the displacement.

Darcy´s equation (Ertekin et al., 2001) gives,
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where

A¼flow area, ft2

k¼reservoir permeability, md
kro ¼relative permeability to oil, dimensionless
krw ¼relative permeability to water, dimensionless
po ¼oil pressure, psia
pw ¼water pressure, psia
qo ¼oil rate, bbl/D
qw ¼water rate, bbl/D
r¼radius from wellbore, ft
Z¼elevation (positive upward), ft
μo ¼oil viscosity, cp
μw ¼water viscosity, cp
ρo ¼oil density, lbm/cu-ft
ρw ¼water density, lbm/cu-ft
ρo/144¼oil hydrostatic gradient, psia/ft (1/144 is the conversion
factor from square ft to square inch)
ρw/144¼water hydrostatic gradient, psia/ft (1/144 is the con-
version factor from square ft to square inch)
θ¼dip angle, degrees

Recalling the concept of capillary pressure we have
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where Pc¼capillary pressure, psia
Replacing water-phase pressure in Eq. (2) by Eq. (3), we have
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Expressing in pressure gradient, Eqs. (1 and 4) are changed to

Nomenclature

A ¼flow area in radial flow system, ft2

A’ ¼flow area in linear flow system, ft2

Ax ¼flow area regardless flow system, ft2

fw ¼ fractional flow of water at reservoir, dimensionless
fw1 ¼ fractional flow of water at radius r1, dimensionless
fw2 ¼ fractional flow of water at radius r2, dimensionless
fws ¼ fractional flow of water at surface, dimensionless
h ¼payzone thickness, ft
k ¼reservoir permeability, md
kro ¼relative permeability to oil, dimensionless
krw ¼relative permeability to water, dimensionless
Pc ¼capillary pressure, psia
po ¼oil pressure, psia
pw ¼water pressure, psia
Qi ¼dimensionless injection volume, dimensionless
qo ¼oil rate, bbl/D
qt ¼total liquid rate, bbl/D
qw ¼water rate, bbl/D
r ¼radius from wellbore, ft

rD ¼dimensionless radius, dimensionless
re ¼reservoir radius, ft
rf ¼displacement front position in radial system, ft
rSw ¼position of any water saturation in radial system, ft
rw ¼wellbore radius, ft
Sw ¼water saturation, dimensionless
t ¼time, days
tbt ¼waterflood breakthrough time, days (or years)
xf ¼displacement front position in linear system, ft
Z ¼elevation (positive upward), ft
μo ¼oil viscosity, cp
μw ¼water viscosity, cp
ρo ¼oil density, lbm/cu-ft
ρw ¼water density, lbm/cu-ft
ρo/144 ¼oil hydrostatic gradient, psia/ft
ρw/144 ¼water hydrostatic gradient, psia/ft
Δr ¼radius incremental, ft
Δt ¼time period, days
ϕ ¼porosity, dimensionless
θ ¼dip angle, degrees
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Fig. 1. A circular reservoir with a well located in the center.

H. Zhang et al. / Journal of Petroleum Science and Engineering 137 (2016) 250–257 251



Download English Version:

https://daneshyari.com/en/article/1754654

Download Persian Version:

https://daneshyari.com/article/1754654

Daneshyari.com

https://daneshyari.com/en/article/1754654
https://daneshyari.com/article/1754654
https://daneshyari.com

