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a b s t r a c t

We predict facies from wireline well log data for a fluvial deposit system offshore Norway. The wireline
well logs used are sonic, gamma ray, neutron porosity, bulk density and resistivity. We solve this inverse
problem in a predictive Bayesian setting, and perform the associated model parameter estimation.
Spatial vertical structure of the facies is included in the model by a Markov chain assumption, making
geological model interpretation possible. We also take convolution effect into account, assuming that the
observed logs might be measured as a weighted sum of properties over a facies interval. We apply the
methods on real well data, with thick facies layers inferred from core samples. The proposed facies
classification model is compared to a naive Bayesian classifier, which does not take into account neither
vertical spatial dependency, dependencies between the wireline well logs nor convolution effect. Results
from a blind well indicate that facies predictions from our model are more reliable than predictions from
the naive model in terms of correct facies classification and predicted layer thickness.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Determination of categorical attributes like facies or lithofacies
throughout a well is usually performed by qualitative well log and
core sample analysis, developed from geological experience and
rock physics models. This classification is of importance in ex-
ploration and development of petroleum reservoirs. Continuous
wireline logs are collected in most wells and contain quantitative
information, but because of noise and possible convolution they
may have limited information regarding the true rock properties.
Because reservoir properties are directly measured on core sam-
ples, the results are typically the most reliable petrophysical data.
However, such data are only available in small numbers of cored
wells for many fields since coring introduces additional cost and
risk during drilling. Where available, the core plugs are usually
sampled discretely throughout the well, moreover they may be
preferentially sampled. In some locations along the well it may not
be possible to extract core plugs resulting from fractures and
poorly consolidated plugs, while other locations may be over-
represented caused by easier sampling. Thus, both the geologist
and the petrophysicist need to use petrophysical logs for facies
recognition and well evaluation, but because of convolution effects

in the logging measurement, facies recognition may be challen-
ging and data evaluation inaccurate. An inversion of the petro-
physical logs may therefore be valuable both for geologist and
petrophysicist. In this paper, we study facies along a vertical 1D-
profile through the subsurface layers. The objective is to create a
model for prediction of the subsurface layers based on the ob-
served wireline well logs. This is an ill-posed inverse problem, as
multiple facies combinations may return the same observed well
logs because of various noise components.

Several classification methods for facies and lithofacies de-
termination from multiple logs are presented in the literature. The
two main classification approaches are based on artificial in-
telligence and multivariate statistical methods. Artificial in-
telligence methods include artificial neural networks (Qi and Carr,
2006; Tang et al., 2011), and fuzzy logic (Cuddy, 2000; Chang et al.,
1997). Multivariate statistical classification methods include dis-
criminant and cluster analysis, regression analysis (Guo et al.,
2007; Tang and White, 2008), statistical tree-based analysis (Perez
et al., 2005), and Bayesian analysis. In this study we focus on
Bayesian classifiers.

By approaching the problem in a Bayesian fashion, we are able
to incorporate in the model a priori knowledge along with the
information carried by the well log data. General geological
knowledge, derived from geological exploration of the facies in the
reservoir, is captured in the prior model. The forward function,
defining the petrophysical well log measures given the facies, is
specified as a likelihood model. The prior and the likelihood
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models define the posterior model representing the facies dis-
tribution along the well, given the observations. In Loures and
Moraes (2006), porosity and clay volume is predicted in a Bayesian
framework based on rock physics likelihood models, which again
is used to classify facies by a simple cut-off model. In Coudert et al.
(1994) and Li and Anderson-Sprecher (2006), a Bayesian classifi-
cation method is described in which the well logs are assumed to
be independent, the likelihood models are estimated by Gaussian
distributions and the prior model is defined as the lithofacies
proportions in the well. Li and Anderson-Sprecher (2006) terms
this approach a naive Bayesian (NB) classifier, which is found to be
superior to linear discriminant analysis, and a Gaussian likelihood
model outperforms non-parametric kernel density models. A si-
milar classifier by use of beta likelihood models is described in
Tang and Ji (2006) and Tang and White (2008), and this model
appears to perform better than probabilistic neural networks,
linear discriminant analysis and multinomial logistic regression.
Consequently, Bayesian inversion seems to be well suited for facies
classification from well log data.

Most facies classification methods found in the literature as-
sume that the well logs are vertically elementwise independent.
To take spatial dependency into account the predictions are
sometimes post-processed, see for example Qi and Carr (2006) in
which predicted thin lithofacies layers are removed to avoid small-
scale alterations. In the current study, we include spatial de-
pendency by choosing a prior facies model according to Eidsvik
et al. (2004). The underlying spatial coupling is captured with a
Markov chain assumption in the prior facies model, in which each
element in the well conditioned on the rest of the well is depen-
dent on its closest neighbors only. Geological restrictions like in-
valid transitions between facies classes can then be incorporated
in the model.

The observed well logs register a spatial convolution of the true
physical properties, often termed the shoulder effect (Theys, 1999).
This entails that each registration is a weighted sum of the prop-
erties in a vertical interval, the weights are sometimes referred to
as the filter function (Kaaresen and Taxt, 1998). We choose to
denote the weight vector as a wavelet, according to the termi-
nology of seismic inversion with the same interpretation. The
wavelets shape and width are different for each well log, and are
controlled by the respective well logging tools. The tool specifi-
cations are often unknown to well log analysts, making this a
deconvolution problem with unknown wavelets. The convolution

models presented in this study are inspired by the work of Larsen
et al. (2006) and Rimstad and Omre (2013).

2. Problem definition and field data

We consider in this case study two wells from the same geo-
logical field, a training well and a test well. The facies and well log
profiles in the two wells are displayed in Fig. 1, and have been
rescaled to 0.1 m intervals. In Section 3, we estimate all model
parameters from the given facies and well log data in the training
well. We then attempt to classify the facies profile from the well
log profiles in the training well, and assess the predictive perfor-
mance. Next, we apply the estimated model parameters from the
training well when predicting facies in the test well.

The main interest in this study is on whether the facies pre-
dictions improve when we include in our model convolution ef-
fects in the well log profiles and spatial dependency in the facies
profile. Information on the convolution effect introduced by the
different logging tools is typically not given by the logging com-
panies and is challenging to find. Both the vertical resolution and
the expected shape of the convolution effect depend on both the
logging speed (for statistical measurements), the sampling rate,
and the tool specifications. A fictitious example displaying the
convolution effect is given in Fig. 2. The well log rock properties, in
convolution with the given wavelet, constitute the smoothed
measured well log properties which corresponds to the well log
data given in Fig. 1.

The geological system in this study is a meandering fluvial
system, thus the depositional facies are dominated by processes
associated with rivers or streams. These systems are hetero-
geneous, i.e. the reservoir properties vary between the facies and
also within the facies. The facies proportions also vary fromwell to
well as can be seen from Fig. 1. Facies is here separated into three
possible classes, with properties and description given in Table 1.
The facies logs in Fig. 1 are interpreted by geologist by use of view
cut of the cores and well logs in cored interval and well logs only
in uncored sections. Throughout the depth interval considered
here, the core coverage is high.

The original wireline well logs were logged by the same logging
company in the mid-1980s. The continuous logs in this study in-
clude log-sonic (LOGDT), gamma ray (GR), neutron porosity
(NPHI), bulk density (RHOB) and log-resistivity (LOGRT). The
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Fig. 1. Rescaled observed well logs LOGDT, GR, NPHI, RHOB, LOGRT and facies in (a) training well over a depth interval of about 2400–2510 m below the subsurface and
(b) test well over a depth interval of about 2515–2600 m below the subsurface. See Table 1 for a description of the facies classes by color.
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