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a b s t r a c t

Robust optimization (RO) approach is inherently a multi-objective paradigm. The proposed multi-
objective optimization formulation would attempt to find the optimum – yet robust – water injection
policies. Two multi-objective, Pareto-based robust optimization scenarios have been investigated to
encounter the permeability uncertainties. These multi-objective RO scenarios have been done based on a
small representative set of realizations but they have introduced optimum points that could be reliable
for the original set of realizations either. In both scenarios, the desired objective functions are expected
value and variance of Net Present Value (NPV). The underlying RO scenarios have been done without any
observation/measurement of pressures or well flows. Therefore, an ensemble of equally probable
realizations has been used and ranked using Monte Carlo simulation technique. The Non-dominated
Sorting Genetic Algorithm second version (NSGA-II) has been used as the optimization algorithm. The
multi-objective robust optimization scheme has been applied for both scenarios via a twin setup of 100
realizations, one for investigation and the other one for validation purposes. The test studies
demonstrated the superiority of the proposed methodology to give a robust optimal Pareto-based
solution(s) (injection policies) under permeability uncertainties that could be reliable for the original set
of realizations. Probability distribution functions (PDFs) of the original and small set of realizations have
been depicted for comparison. Both optimization scenarios introduced optimum and robust injection
policies that lead to higher expected value of NPV and lower variance, besides preserving the first and
second moments of the original population of the original set of realizations.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

One of the main challenges in optimization of injected water
rates is the spatial variability and uncertainty in formations
(Mantoglou and Kourakos, 2007). Dealing with uncertainty is an
important topic in all engineering applications such as petroleum
production, reservoir optimization, water resources (Mantoglou and
Kourakos, 2007; Ahmadi et al., 2010; Ren et al., 2013), ground water
management field (Feyen and Gorelick, 2004; Baú and Mayer, 2007;
Bayer et al., 2008), to name a few.

In the reservoir optimization problems, insufficient data leads
uncertainty to intrinsic characteristics of a geological model (such
as permeability and/or porosity map). Thus, the exact estimation
of reservoir/formation properties will stay unknown and accord-
ingly, optimization just based on a single and uncertain geological

model would not be reliable. Applying various realizations of
uncertain parameters with equal probability is an alternative
way to rely on just one deterministic/stochastic value (van Essen
et al., 2009; Alhuthali et al., 2010; Almeida et al., 2010; Chen and Hoo,
2012). This method is called Monte Carlo method and is a common
way to deal with uncertain parameter values (Bayer et al., 2008;
Carrera et al., 2005; Mantoglou and Kourakos, 2007; Baú, 2012). A
single objective optimization has been considered in the mentioned
works. There has been some multi-objective optimization within the
petroleum engineering literature. But, most of the applications of
these approaches appear to be in the area of history matching, where
various measures of misfit have been used as the objective functions
(Hajizadeh et al., 2011; Shelkov et al., 2013; Mohamed et al., 2011;
Ferraro and Verga, 2009; Sayyafzadeh and Haghighi, 2012).

Multi-objective optimization has also been applied for field
development problems, where objectives such as recovery factor,
duration of plateau production, NPV, the voidage replacement ratio
etc,… have been used as the objective functions (Gross, 2012;
Sibaweihi and Awotunde, 2012; Isebor and Durlofsky, 2014). In our
previous work (Yasari et al., 2013) a well control optimization
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problem involving three objectives has been considered to optimize
the different components of Net Present Value (NPV) under econom-
ical and geological uncertainty.

None of the reported works have considered robust optimization
objectives (mean and variance), independently. Also, despite of the
noticeable computational intensity of the optimization approach
based on multiple realizations, in the reported works under uncer-
tainty all the generated realizations have been used that leads to a
huge computational time. On the other side, the reliability of the RO
results based on the selected set of realizations has not been
investigated. In this paper, we have tried to improve computational
time and solving performance of the RO problems when using
multiple sampled realizations by theoretical support of optimal
multi-objective scheme. In order to encounter the time consuming
process of RO, optimization has been done based on the small set
(sampled set) of realizations as the representative of the original set
of realizations. The small set of realizations has been selected using
the statistical distribution of the economical objective function
(NPV). This small set has been chosen based on the nine percentile
of NPV data (Yang et al., 2011). Then, Multi-objective Robust
Optimization (MORO) schemes have been performed based on this
small set of realizations.

However, the results of the optimization based on this small set
should be reliable for the original population either. Therefore, two
multi-objective RO scenarios have been proposed to determine
optimum points with this goal and PDFs of the small and original
set of realizations have been depicted for comparison. The first
multi-objective optimization formulation would attempt to find
the optimum and robust water injection policies that lead to
higher expected values of NPV and lower variances.

In this study, original data distribution is almost normal. So, in
the second optimization problem preserving the first and second
moments of the original population in the small set of realizations
would be suffice. In this way, calculated results based on the small
set of realizations would be reliable.

The general goal of RO is obtaining an optimum design value
(water injection rate in each injection well as the decision variable)
which is least sensitive to the uncertainty. Non-dominated sorting
genetic algorithm second version (NSGA-II) with some modification
to handle the constraints has been used as the optimizer engine.

Section 2 presents methodology of the work including Multi-
Objective Robust Optimization, Pareto optimality, geological uncer-
tainty, problem formulation and RO flowchart. In Section 3, the
proposed approach is applied and verified via a twin setup of 100
realizations, one for investigation and the other one for validation.
Further, in Section 4 the results are shown and discussed, followed by
the conclusion in Section 5.

2. Methodology

2.1. Multi-objective robust optimization (MORO)

To cope with the uncertainty in the reservoir, a number of
possible realizations that are equally probable would be generated
and RO would be performed based on these possible realizations.
In this work, permeability values are supposed to be the main
sources of uncertainty in the process of water-flooding. The
manipulated or decision variables would be computed and then
applied for all realizations. There are several types of objective
functions that could be utilized and in the present contribution,
the optimization was performed by considering the ‘expected
sense’ (Terwiesch et al., 1994).

Robust objective function(s) – The main aim of an RO algorithm
is to exteremize the desired objective function value under
uncertainties. This leads to defining two different objectives

associated with the function to be optimized; mean value of the
desired objective function (f ) and its variance δf (or standard
deviation,

ffiffiffiffiffi
δf

p
) defined by the following equations:

f ¼ E½f � � 1=nt

Xnt

j ¼ 1
f j ð1Þ

δf ¼ ½E½f 2��E2½f �� � 1
nt�1

Xnt

j ¼ 1
ðf j� f Þ2 ð2Þ

where nt denotes the number of realizations and f is a vector of
desired objective functions. It should be noted that the square of f
(i.e.,f 2) is the element-by-element (Schur) product of f with itself.
In this study there are 100 realizations (nt) and NPV of each
realization (fj) has been considered as an element of the vector
function f .

RO is inherently a multi-objective scheme. As mentioned ear-
lier, there are two main (conflicting) objective functions being
formulated to deal with uncertainty and therefore, the problem
becomes a multi-objective optimization problem.

Generally speaking, a multi-criteria optimization problem can
be demonstrated as:

Minimize=Maximize : ff 1ðuÞ; f 2ðuÞ; :::; f iðuÞ; :::; f NðuÞg i¼ 1; :::; N

Subject to gjðuÞ ¼ 0 j¼ 1; :::; M

hkðuÞr0 k¼ 1; :::; K ð3Þ

where f ðuÞ defined as ff 1ðuÞ; f 2ðuÞ; :::; f iðuÞ; :::; f NðuÞg is a vector of
objective functions, f iðuÞ is a typical objective (or value) functions,
and u is a vector of design or decision variables
ðu1; u2; :::; ui; :::; unÞ. N is the number of conflicting objective
functions, M is the number of equality constraints, and K is the
number of inequality constraints and n is the number of decision
variables. NPV, productivity or water cut (and so on) are some
objectives that could be defined as the objective functions in a
multi objective optimization problem. In the current RO problem,
the mean (f ) and variances (δf ) (2 conflicting objective functions,
N¼2) of NPVs (f ) are considered as the multi objective optimiza-
tion functions. Bottomhole pressures or water injection rates of
each well are two examples of decision variables.

2.2. Pareto optimality

The solutions in the Pareto front (or set) are the ones that
simultaneously satisfy all the objectives and there is no other
solution that dominates them. Because finding the Pareto optimal
front is very challenging, difficulties arise when conventional
methods are used for these types of problems (Malekmohammadi
et al., 2011). Expression (4) defines Pareto optimality for a two
objective problem. For maximization problem, x1 is said partially
greater than x2 if and only if:

8 i : f iðx1ÞZ f iðx2Þ and ( i : f iðx1Þ4 f iðx2Þ; i¼ 1; :::;N ð4Þ
x1 dominates the solution x2, if expression (4) holds.

When there is a trade-off between objectives this leads to a set
of optimal solutions called the “Pareto set”.

In Fig. 1 the continuous curves of Pareto front have been shown
for four different scenarios with two objective functions. Each
objective is able to be minimized or maximized. Solutions of Pareto
optimal set are at the edge of the feasible search region (Burke and
Kendall, 2005). It could be seen from Fig. 1 that minimizing or
maximizing each objective defines a different problem with a
different Pareto optimal front.

2.3. Geological uncertainty

In this study, the permeability map of reservoir has been
considered as the uncertainty space. By discretizing this space, 100
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